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Abstract—A computational algorithm is presented for the
Bayesian Cramér-Rao lower bound (BCRB) in filtering appli-
cations with measurement noise from mixture distributions with
jump Markov switching structure. Such mixture distributions
are common for radio propagation in mixed line- and non-line-
of-sight environments. The newly derived BCRB is tighter than
earlier more general bounds proposed in literature, and thus gives
a more realistic bound on actual estimation performance. The
resulting BCRB can be used to compute a lower bound on root
mean square error of position estimates in a large class of radio
localization applications. We illustrate this on an archetypical
tracking application using a nearly constant velocity model and
time of arrival observations.

Index Terms—Bayesian Cramér-Rao bound, jump Markov
system, location tracking, non-linear filtering.

I. INTRODUCTION

Wireless location systems offering reliable estimates of the

mobile terminal (MT) position have become an important

research field over the last few years [1]. In this letter, we

are concerned with tracking an MT in cellular radio networks

with known base station (BS) positions, where time of arrival

(TOA) estimates between BS and MT are used to estimate the

MT position. Especially in urban areas, so called non-line-

of-sight propagation (NLOS) can severely affect the position

estimates of tracking algorithms. NLOS propagation occurs

due to obstacles such as buildings, trees or hills, and hinders

the signals to arrive via the direct (or LOS) path at the MT/BS,

thus, leading to biased TOA estimates.

One approach to deal with the different propagation conditions

is to introduce a noise model for LOS propagation and a noise

model for NLOS propagation, where the transition between the

LOS and NLOS mode is modeled with a Markov chain. This

type of model has been proposed e.g. for TOA measurements,

received signal strength and angle of arrival measurements,

see for instance [2]–[4]. The area of developing multiple

model-based filtering algorithms to solve this type of problem

has become relative mature, see for instance [3]–[6]. We are

interested here in the development of tight lower bounds on

the positioning performance, which has been addressed so far

only by a few authors [5], [6].

In [5], a conditional Cramér-Rao bound (CRB) for MT track-

ing using TOA measurements has been computed, which is

based on an a-priori known mode sequence, a single MT

trajectory and assuming zero process noise. A general method
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to compute a Bayesian CRB (BCRB) for multiple model

filtering with unknown mode sequence is presented in [7],

which is hereinafter referred to as Enumer-BCRB. The idea

is to first compute the BCRB conditioned on a sequence of

modes and then to evaluate the corresponding unconditional

bound by averaging the conditional BCRB over all possible

mode sequences.

The Enumer-BCRB for the MT tracking problem has been

proposed in [6], where some of the expectations involved

in computing the bound are further approximated using a

decentralized extended Kalman filter (EKF) and deterministic

sampling schemes. However, the Enumer-BCRB is known to

be overly optimistic, i.e. the bound is often not tight and thus

cannot predict the filtering performance. Thus, it is of great

importance to develop a lower bound that is tight.

Recently, another type of BCRB for jump Markov systems

for mode-dependent process models has been proposed which

was shown to be sometimes tighter than the Enumer-BCRB

[8]. In this letter, we modify the approach of [8] to the case

of mode-dependent measurement models. The corresponding

BCRB is derived for a system composed of a linear Gaussian

process model and nonlinear measurement model with additive

noise structure. It will be shown that for the particular case of

MT tracking using a nearly constant velocity model and TOA

measurements, the newly proposed BCRB is tighter than the

Enumer-BCRB.

II. SYSTEM MODEL

Consider the following discrete-time jump Markov system,

that is described by the following process and measurement

equation

xk = Fk xk−1 + vk, (1a)

zk = hk(xk, rk) +wk(rk), (1b)

where zk ∈ R
nz is the measurement vector at discrete time

k and xk ∈ R
nx is the state vector, Fk is an arbitrary linear

mapping matrix and hk is a non-linear mapping vector, both of

appropriate size. The process and measurement noise vectors

vk ∈ R
nv and wk ∈ R

nw are assumed to be mutually

independent white processes. The process noise is distributed

as vk ∼ N (0,Qk), where the matrix Qk has to be invertible.

The measurement noise can be distributed arbitrarily, but with

known probability density function (pdf). The mode variable

rk denotes a discrete-time Markov chain with s states and

transition probability matrix Pr{rk|rk−1}. At time k = 0, prior

information about the state x0 and mode r0 is available in

terms of the pdf p(x0) and probability mass function Pr{r0}.

The initial state x0 is assumed to be Gaussian distributed with

mean x̂0 and covariance matrix P0.

In the following, let the operator Ep(x){·} denote expectation,
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where the subscript indicates the pdf that is used in the

expectation operation. Furthermore, let x0:k = [xT

0 , . . . ,x
T

k ]
T

and z1:k = [zT1 , . . . , z
T

k ]
T denote the collection of states and

measurement vectors up to time k, and let x̂0:k(z1:k) denote

any estimator of the sequence x0:k. The sequence of mode

variables at time k is denoted as ri1:k = (ri1, r
i
2, . . . , r

i
k),

where i = 1, . . . , sk. The gradient of a vector u is defined

as ∇u = [∂/∂u1, . . . , ∂/∂un]
T and the Laplace operator is

defined as ∆t

u
= ∇u[∇t]

T.

III. BAYESIAN CRAMÉR-RAO BOUND

The BCRB for the sequence x0:k provides a lower bound on

the mean square error matrix for any estimator x̂0:k(z1:k), and

is defined as the inverse of the Bayesian information matrix

(BIM) J0:k ,

Ep(x0:k,z1:k){[x̂0:k(z1:k)− x0:k][x̂0:k(z1:k)− x0:k]
T} ≥ J−1

0:k.
(2)

Here, the matrix inequality A ≥ B means that the difference

A − B is a positive semidefinite matrix [9]. The BCRB for

the current state xk is of particular interest, since this gives a

lower bound on the performance of nonlinear filtering. It has

been shown in [10], that the BCRB for xk is given by the

(nx×nx) lower-right submatrix of [J0:k]
−1.

In the following, an algorithm that numerically evaluates J0:k

for system models given by (1) is presented, from which finally

the BCRB for xk can be obtained. The Bayesian information

matrix J0:k is given by

J0:k = Ep(x0:k,z1:k){−∆x0:k

x0:k
log p(x0:k, z1:k)}. (3)

This matrix is decomposed using Bayes’ rule, yielding

J0:k = Jx0:k
+ Jz1:k

, (4)

where Jx0:k
denotes the BIM of the prior:

Jx0:k
= Ep(x0:k){−∆x0:k

x0:k
log p(x0:k)}, (5)

and where Jz1:k
denotes the BIM of the data:

Jz1:k
= Ep(x0:k,z1:k){−∆x0:k

x0:k
log p(z1:k|x0:k)}. (6)

In case of a linear Gaussian process model, cf. (1a), and

assuming that the initial state x0 is Gaussian distributed

according to x0 ∼ N (x̂0,P0), the BIM of the prior can be

computed analytically from the relationship

Jx0:k
= Ep(x0:k){−∆x0:k

x0:k
log p(x0)}

+

k
∑

n=1

Ep(x0:k){−∆x0:k

x0:k
log p(xn|xn−1)}

= δk+1(1, 1)⊗ Jx0
+

k
∑

n=1

δk+1(n, n)⊗ FT

n Q−1
n Fn

−δk+1(n, n+ 1)⊗ FT

n Q−1
n − δk+1(n+ 1, n)⊗Q−1

n Fn

+δk+1(n+ 1, n+ 1)⊗Q−1
n , (7)

where Jx0
= [P0]

−1, ⊗ denotes the Kronecker product and

δk+1(i, j) denotes a (k + 1)× (k + 1) dimensional matrix

whose elements are all zero except at the i-th row and the j-th

column which is one. The expression in (7) describes a block

tridiagonal matrix of growing dimension, whose elements were

derived in [10]. The evaluation of the BIM of the data Jz1:k

involves the computation of expectations, which are difficult to

express analytically for measurement models of the form (1b).

In the following, we focus on the numerical approximation of

Jz1:k
. The expectation given in (6) can be reformulated as

Jz1:k
= Ep(x0:k,z1:k)

{

∇x0:k
p(z1:k|x0:k)[∇x0:k

p(z1:k|x0:k)]
T

[p(z1:k|x0:k)]2

}

,

(8)

which can be numerically approximated according to

Jz1:k
≈

1

N

N
∑

j=1

∇x0:k
p(z

(j)
1:k|x

(j)
0:k)[∇x0:k

p(z
(j)
1:k|x

(j)
0:k)]

T

[p(z
(j)
1:k|x

(j)
0:k)]

2
, (9)

where x
(j)
0:k and z

(j)
1:k, j = 1, . . . , N are independent and identi-

cally distributed vectors such that (x0:k, z1:k) ∼ p(x0:k, z1:k).
In order to approximate Jz1:k

as in (9), the quantities

p(z1:k|x0:k) and ∇x0:k
p(z1:k|x0:k) have to be evaluated. A

recursive method for computing these quantities, and thus

Jz1:k
, is given in Algorithm 1. Note, that samples from

p(zk|x
(j)
k , r

(j)
k ) can be obtained by generating a realization

wk ∼ pw(rk) from the density that is associated to the r
(j)
k .

This realization together with the given x
(j)
k is plugged into

the measurement model (1b), in order to deliver a realization

z
(j)
k .

The computation of Jz1:k
does not require an explicit sum-

mation over all possible mode sequences ri1:k, yielding a

complexity which is in the order of O(N ·m · k). However,

for the computation of the BCRB for xk , the matrix inverse

[J0:k]
−1 is required, whose complexity increases with time

k and which is in the order of O([(k + 1)nx]
3). Thus, the

algorithm becomes eventually impractical for state sequences

of arbitrary length. In [10], the block tridiagonal property

was used to find a recursive algorithm for computing the

(nx×nx) lower-right submatrix of [J0:k]
−1. The presented

algorithm, however, does not provide a matrix Jz1:k
with

such a property. In order to obtain a recursive algorithm

with reduced computational complexity, ideas similar to those

presented in [8] can be adopted, where certain matrix elements

on the off-diagonal of Jz1:k
are intentionally set to zero

to preserve a block tridiagonal structure, thus, allowing a

recursive computation of a submatrix of J0:k from which the

BCRB for xk can be finally extracted.

IV. MOBILE TERMINAL TRACKING EXAMPLE

The MT state vector xk ∈ R
nx to be estimated is

composed of the two-dimensional position and velocity, i.e.

xk = [xk, yk, ẋk, ẏk]
T. The MT’s movement is modeled with

a nearly constant velocity model

xk = Fxk−1 + vk−1, (10)

where

F = I2 ⊗

[

1 T
0 1

]

,

T is the sampling time and I2 is the identity matrix of size 2.

The process noise vector vk−1 ∈ R
4 is assumed to be zero-

mean Gaussian distributed with block-diagonal covariance

matrix Q = diagb([Σ,Σ]), where

Σ = q

[

T 3/3 T 2/2
T 2/2 T

]

,
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Algorithm 1 Computation of Bayesian information matrix of

the data Jz1:k

(1) At time k = 0, generate x
(j)
0 ∼ p(x0) and r

(j)
0 ∼ Pr{r0}

for j = 1, ..., N , and define x
(j)
0:0 = x

(j)
0 .

(2) For k = 1, 2, . . . , and j = 1, . . . , N do:

– Generate x
(j)
k ∼ p(xk|x

(j)
k−1) and set x

(j)
0:k =

[x
(j)
0:k−1,x

(j)
k ]. Generate r

(j)
k ∼ Pr{rk|r

(j)
k−1}, z

(j)
k ∼

p(zk|x
(j)
k , r

(j)
k ) and set z

(j)
1:k = [z

(j)
1:k−1, z

(j)
k ].

– Update the stored quantities

Pr{rk−1}, p(z
(j)
1:k−1|x

(j)
0:k−1, rk−1) and

∇x0:k−1
p(z

(j)
1:k−1|x

(j)
0:k−1, rk−1) using the relations:

Pr{rk} =
∑

rk−1

Pr{rk|rk−1} Pr{rk−1},

p(z
(j)
1:k|x

(j)
0:k, rk) = p(z

(j)
k |x

(j)
k , rk)

∑

rk−1

Pr{rk−1|rk}

×p(z
(j)
1:k−1|x

(j)
0:k−1, rk−1),

∇x0:k
p(z

(j)
1:k|x

(j)
0:k, rk) =

∑

rk−1

Pr{rk−1|rk}
[

[∇x0:k
p(z

(j)
k |x

(j)
k , rk)]

×p(z
(j)
1:k−1|x

(j)
0:k−1, rk−1) + p(z

(j)
k |x

(j)
k , rk)

× [∇x0:k
p(z

(j)
1:k−1|x

(j)
0:k−1, rk−1)]

]

.

where

Pr{rk−1|rk} =
Pr{rk|rk−1} · Pr{rk−1}

Pr{rk}
.

- Evaluate p(z
(j)
1:k|x

(j)
0:k) and ∇x0:k

p(z
(j)
1:k|x

(j)
0:k) as fol-

lows:

p(z
(i)
1:k|x

(j)
0:k) =

∑

rk

p(z
(j)
1:k|x

(j)
0:k, rk)Pr{rk},

∇x0:k
p(z

(j)
1:k|x

(j)
0:k) =

∑

rk

[∇x0:k
p(z

(j)
1:k|x

(j)
0:k, rk)] Pr{rk}.

– Evaluate the Bayesian information matrix of the data

Jz1:k
according to (9).

and q represents the process noise intensity level. It is further

assumed that the MT is measuring the time a radio signal

requires to propagate from the m-th BS to the MT, where

m = 1, . . . , nz. In order to simplify the analysis, time

synchronization among all BSs and the MT is assumed. The

resulting TOA measurements are multiplied by the speed of

light, yielding distance estimates, that are collected in the

vector zk ∈ R
nz .

The switching between LOS and NLOS propagation condi-

tions is modeled for each TOA with a 2-state Markov chain,

where r
(m)
k = 1 is assigned to the event “LOS” and r

(m)
k = 2

is assigned to the event “NLOS”. The nz Markov chains are

combined into a single, augmented Markov chain, described

by the mode variable rk , that is assumed to be among the

s = 2nz possible modes rk ∈ {1, . . . , 2nz}. As long as

the TOA measurements are collected from BSs located at

different sites, the LOS/NLOS transitions among different

measurements can be assumed to be independent. In this case,

the transition probability matrix Π of the augmented Markov

chain can be expressed in terms of the transition probability

matrices Πm of the individual measurements according to

Π = Π1 ⊗Π2 ⊗ · · · ⊗Πnz
.

The effects of different propagation conditions can be taken

into account by introducing a mode-dependent measurement

noise vector, so that the model for the TOA measurements can

be written as

zk = hk(xk) +wk(rk), (11)

where hk(xk) = [h
(1)
k (xk), . . . , h

(nz)
k (xk)]

T, and h
(m)
k (xk)

is the Euclidean distance between the MT and the m-th BS.

In LOS propagation conditions, each TOA measurement is

only corrupted by system noise, which is described by a zero-

mean Gaussian distribution with variance σ
(m),2
LOS . In NLOS

conditions, two additive and independent error sources occur,

namely system noise and errors resulting from NLOS propa-

gation. In the present analysis, the NLOS error is assumed

to be Gaussian distributed with positive mean µ
(m)
NLOS and

variance σ
(m),2
NLOS [3], [5], [6]. In this case, wk(rk) is Gaussian

distributed with mean vector µ(rk) and diagonal covariance

matrix R(rk), whose elements are given by

µ(r
(m)
k ) =

{

0 for r
(m)
k = 1

µ
(m)
NLOS for r

(m)
k = 2,

σ2(r
(m)
k ) =

{

σ
(m),2
LOS for r

(m)
k = 1

σ
(m),2
LOS + σ

(m),2
NLOS for r

(m)
k = 2

respectively. For the problem at hand, the densities that are

required to evaluate Algorithm 1 are given by p(xk|xk−1) =
N (xk;Fxk−1,Q) and p(zk|xk, rk) = N (zk;h(xk) +
µk(rk),Rk(rk)). The elements of the gradient vector

∇x0:k
p(zk|xk, rk) can be determined from

∇xl
p(zk|xk, rk) =















p(zk|xk, rk) [∇xl
hT

k (xk)]R
−1
k (rk)

×[zk − h(xk)− µk(rk)] for l = k

0 otherwise,

(12)

where l = 1, . . . , k holds.

V. PERFORMANCE EVALUATION

The newly proposed BCRB is compared to the following

bounds and filter performances: 1. The Enumer-BCRB using

Monte Carlo methods, see [7] and references therein; 2. The

KF-based interacting multiple model (IMM) distance smoother

[3]; 3. The IMM-EKF [5].

Simulation Scenario: It is assumed that the MT re-

ceives nz = 3 TOA measurements from BSs located at

[−3 km,−2 km], [3 km, 5 km] and [6 km, 2 km]. The MT tra-

jectories are generated according to the model given in

(10), with process noise intensity q = 0.5m2/s3. The ini-

tial MT state vector x0 is Gaussian distributed with mean

x̂0 = [500m, 500m, 5m/s, 5m/s]T and covariance matrix

P0 = diag([(50m)2, (50m)2, (2m/s)2, (2m/s)2]). The sam-

pling time is chosen as T = 0.2 s and the sample length is

100. The TOA measurements are generated using (11), with

noise parameters set to σ
(m)
LOS = 150m, σ

(m)
NLOS = 409m and

µ
(m)
NLOS = 513m, where m = 1, 2 and 3 [3]. The LOS/NLOS
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transitions for each TOA measurement are modeled with a

Markov chain, whose initial mode probabilities are set to

Pr{r
(m)
0 = 1} = 0.5 and Pr{r

(m)
0 = 2} = 0.5, ∀m, and whose

transition probabilities are given by Pr{r
(m)
k = 1|r

(m)
k−1 = 1} =

0.9 and Pr{r
(m)
k = 2|r

(m)
k−1 = 2} = 0.9, ∀m.

Simulation Results: In this section the simulation results

are presented. All bounds and filters have been initialized with

x̂0 and P0 and the results are averaged over NMC = 20 000
Monte Carlo runs. In Fig. 1, the root mean square error

(RMSE) of the MT position is shown for the different filters

and bounds. It can be observed that the newly proposed BCRB

is tighter than the Enumer-BCRB. The IMM-KF algorithm

has the worst performance, while the performance of the

computationally more complex IMM-EKF is very close to the

BCRB. The fact that the BCRB is tighter than the Enumer-

BCRB is somehow expected, since the Enumer-BCRB is de-

rived as an average bound over estimators that are conditioned

on the mode sequence (i.e. the estimator “knows” the mode

sequence r1:k), while for the BCRB r1:k is explicitly treated

as unknown. However, this relation does not hold always and

depends on many factors such as the difference between the

s models (some are informative, i.e. small noise covariance

Rk(rk), whereas others are less informative, i.e. large noise

covariance Rk(rk)), see also the discussion in [8], or the

existence of a mean µk(rk). Recall that the computation of

the BCRB depends on µk(rk), while the Enumer-BCRB does

not.

Another example for the difference between the BCRB and

the Enumer-BCRB is given in Table I, where the average

MT position RMSE has been evaluated for different mode

transition probability values. It is expected that with decreasing

values for the transition probabilities, the performance of

the different filtering algorithms should degrade, because the

Markov chain becomes less informative. While the filtering

algorithms and the BCRB follow this trend, the Enumer-BCRB

behaves conversely. A possible explanation for this effect is

the missing spread of the means term (between an estimator

that “knows” and does not “know” the mode sequence) in the

computation of the Enumer-BCRB [11, Lemma 2]. For large

transition probability values, the average performance differ-

ences, and thus, the contribution of the spread of the means

term, will be small, since the estimators that do not know the

mode sequence are equipped with a highly informative Markov

chain. For small transition probability values, the reverse is

true and the Enumer-BCRB gives a relatively poor prediction

of filter performance.

TABLE I
POSITION RMSE AVERAGED OVER TIME VS. TRANSITION PROBABILITIES

π
(m)
11 = π

(m)
22 ,∀m

Method 0.6 0.7 0.8 0.9 0.95

IMM-KF 61.6 61.1 60.6 59.7 59.4

IMM-EKF 54.6 54.4 53.9 52.2 51.5

BCRB 53.8 53.5 52.7 51.3 50.3

Enumer-BCRB 48.9 49.0 49.2 49.5 50.1

VI. CONCLUSION

We have investigated the problem of computing the BCRB

for system models, where the measurement model exhibits a
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Fig. 1. Position RMSE vs. time step for the different filters and BCRBs
based on N = 20 000 Monte Carlo runs.

Markovian switching structure. A novel algorithm for numer-

ically evaluating the BIM of the complete state trajectory has

been proposed, from which the BCRB is then extracted. The

BIM can be divided into a sum of a prior BIM, which only

depends on the process model, and a BIM of the data, which

only depends on the measurement model. For the considered

class of problems with a linear process model, the prior BIM

becomes analytical. The non-linear observation model makes

the BIM of the data intractable to compute analytically, and

we propose to use Monte Carlo techniques to approximate

this. For the problem of TOA-based MT tracking with linear

dynamics in mixed LOS/NLOS environments, simulation re-

sults show that the newly proposed BCRB is tighter than a

previously proposed Enumer-BCRB.
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