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Abstract—In this paper, unidirectional communication between
K half-duplex node pairs is considered. The source nodes have N
antennas each and the destination nodes have M antennas each.
There is no direct link between the source and the destination
nodes. Q half-duplex relays, each with R antennas, assist in
the communication. It is assumed that the relays do not have
enough antennas to spatially separate the data streams and hence,
transceive zero forcing cannot be performed at the relays. In this
paper, we propose a scheme in which the source nodes and the
relays cooperate in choosing their precoding matrices and the filter
coefficients, respectively, to perform a cooperative zero forcing. A
closed form solution is proposed and the feasibility condition is
derived. Simulation results show that the proposed cooperative
zero forcing scheme achieves more degrees of freedom and hence,
achieves higher sum rate as compared to reference schemes.

Index Terms—zero forcing, one-way relaying, multiple relays,
interference alignment

I. INTRODUCTION

When there is no direct link between the source and the

destination nodes, relays can be employed to aid the commu-

nication. In this paper, we focus on one-way relaying with

amplify and forward [1] half-duplex relays. In [2], it has

been shown that a single relay with R ≥ K antennas can

support the communication between K source nodes and K
destination nodes when the source and destination nodes have

single antennas. The relay performs multiuser beamforming [2].

This beamforming is a combination of receive beamforming in

the first time slot and transmit beamforming in the second time

slot. The relay spatially separates the data streams based on

the zero forcing (ZF) or minimum mean square error (MMSE)

criterion. Therefore, the relay needs at least K antennas [2]. If

multiple antennas at the source and the destination nodes are

considered, then each source node can transmit d data streams

to its destination node. In order to spatially separate these Kd
data streams, at least R ≥ Kd antennas are required at the

relay.

Multiuser beamforming with multiple relays is considered

in [1]–[5]. In [1]–[4], the nodes and the relays have a single

antenna each. In [1], [2], the relay coefficients are chosen

such that at the destination nodes, the inter-pair interference

is completely suppressed. At least Q > K(K − 1) relays

are required for an interference-free communication. The relay
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coefficients in [3] are used for minimizing the mean squared

error and in [4] to minimize the relay power subject to a signal

to interference plus noise ratio (SINR) constraint. In [5], the

nodes have N antennas each and transmit d = N data streams

to the destination. Each of the Q relays requires R ≥ Kd
antennas to completely remove the inter-pair interference at the

destinations.

In all the methods described in [1]–[5], a sufficient number

of single antenna relays or sufficient antennas at each relay

are necessary to spatially separate the data streams and, hence,

completely suppress interference at the destination nodes. The

source nodes do not help the relay in zero forcing the interfer-

ence at the destination nodes. If the source nodes cooperate

with the relays in choosing the transmit precoders and the

relay processing matrices, then a smaller number R < Kd
of antennas as compared to the case without the cooperation

is required at the relay. This means that for a given number

of antennas at the relays and at the source nodes, now more

users can be supported through the cooperation between the

source and the relay nodes. In [6], a generalized iterative

method to design the precoders, relay processing matrices and

the receive filters jointly is given. These three matrices are

designed one after another by setting the other two constant. In

this case, QR ≥ Kd is sufficient to suppress the interference

at the destinations if the source and destination nodes have

multiple antennas to help the relay in suppressing the inter-

pair interference. However, the algorithm in [6] is an iterative

scheme which converges to a local optimum and during each

iteration, a set of convex optimization problems has to be solved

which involves large computational complexity. A closed form

solution for zero forcing the interference at the destination

nodes through the cooperation between the source and the relay

nodes is not available in the literature.

In this paper, we propose a cooperative zero forcing scheme

in which the source nodes help the relays to suppress inter-

pair interference at the destination nodes. In other words, the

source nodes help the relay to perform transceive zero forcing.

We assume that the destination nodes have M = d antennas, so

that the destination nodes can spatially separate d data streams,

but do not have additional dimensions to suppress inter-pair in-

terference. A closed form solution is proposed to determine the

source precoders and relay processing matrices. The feasibility

condition is also derived in terms of N, Q, R, K and d.
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Fig. 1. K-pair one-way relay network

The organization of the paper is as follows. The system

model is introduced in Section II. In Section III-A, the concept

of transceive zero forcing is briefly explained. The proposed

cooperative zero forcing scheme is then described in III-B.

Section IV evaluates the performance of the proposed schemes

in terms of the sum rate of the system. Section V concludes

the paper.

We use lower case letters for scalars and lower case bold

letters and upper case bold letters to denote column vectors

and matrices, respectively. (.)∗ and (.)H denote the complex

conjugate and complex conjugate transpose of the element

within the brackets, respectively.

II. SYSTEM MODEL

Figure 1 shows a K-pair one-way relay network. Each of

the source nodes Si wants to transmit d data streams to its

destination node Di, for i = 1, 2, . . . ,K. There is no direct

link between the source and the destination nodes. The source

nodes have N ≥ d antennas each and the destination nodes

have M = d antennas and hence, the destination nodes can

spatially separate d data streams, but cannot aid the relays in

suppressing the interference. There are Q relays. All the nodes

and the relays are assumed to be half-duplex. Each relay has

R antennas where it is assumed that R < Kd. If R ≥ Kd,

transceive zero forcing could be performed at each relay [5].

In the first time slot, the source nodes transmit the signal to the

relays and in the second time slot, after linear signal processing,

the relays forward the signals to the destination nodes. The

relays and the source nodes can cooperate in choosing their

signal processing matrices and precoding matrices, respectively,

but they do not share their signals. Let dj and Vj denote the

data symbols and the precoding matrix, respectively, of source

node Sj. Let Hqj denote the Multiple Input Multiple Output

(MIMO) channel between source node Sj and relay q. The

noise at relay q is denoted by the vector n1q. The components

of the noise vector n1q are i.i.d. complex Gaussian random

variables which follow CN (0, σ2
1 ). The signal received at relay

q is given by

xq =

K∑

j=1

HqjVjdj + n1q. (1)

Amplify and Forward (AF) relaying is assumed. The relay

q multiplies the received signal with the relay processing

matrix Gq and forwards the resulting signal sq = Gqxq.

Let s =
[

s
H
1 . . . s

H
Q

]H
. The relays have a sum power

constraint defined by trace
(
ss

H
)
≤ PQ, where PQ is the total

transmit power available at the relays. Let n2k denote the

noise at the destination node Dk. The components of the noise

vector n2k are i.i.d. complex Gaussian random variables which

follow CN (0, σ2
2). The received signal at destination node Dk

is denoted by

d̂k =

Q∑

q=1

F
H
kqGq




K∑

j=1

HqjVjdj + n1q


 + n2k, (2)

where F
H
kq is the matrix denoting the channel between relay

q and destination node Dk. Let ñk =
∑Q

q=1
F

H
kqGqn1q + n2k

denote the effective noise at destination node Dk. Equation (2)

can be rewritten as

d̂k =

Q∑

q=1

F
H
kqGqHqkVkdk +

∑Q

q=1
F

H
kqGq

∑K

j=1,j 6=k HqjVjdj + ñk. (3)

In the above equation, the first and the second terms correspond

to the useful and the interference signals, respectively. Let

Hj =




H1j

...

HQj


 , F

H
k =

[
F

H
k1 . . . F

H
kQ

]
,

G =




G1 0 . . . 0

0 G2 . . . 0

...
...

0 . . . 0 GQ




for j = 1, 2 . . . K and k = 1, 2 . . . K. Then, (3) can be written

as

d̂k = F
H
kGHkVkdk + F

H
kG

K∑

j=1,j 6=k

HjVjdj + ñk. (4)

Let Wkj = F
H
kGHjVj . Assuming that the input symbols

denoted by the elements of the vector dk are independent and

zero mean complex Gaussian distributed with variance one, the

achievable rate with which node Dk can transmit is given by

Rk =
1

2
log2

∣∣∣∣∣∣∣
I +




K∑

j=1,j 6=k

WkjW
H
kj + R

ññ




−1

WkkW
H
kk

∣∣∣∣∣∣∣
(5)

where R
ññ

is the covariance matrix of the effective noise ñk.

III. TRANSCEIVE ZERO FORCING

A. Introduction to Transceive Zero Forcing

In this section the concept of transceive zero forcing [7] is

explained. The receive signatures of the signal from the jth

source node at the relays are given by HjVj . In order to

spatially separate the signals in the QR dimensional relays



space, combined receive zero forcing has to be done at the

relays. The receive zero forcing matrix GRx is given by

GRx =
[

H1V1 H2V2 . . . HKVK

]+
. (6)

Here + denotes the pseudo-inverse. Then the relays need to

perform transmit zero forcing to transmit the signals interfer-

ence free to the destinations. The transmit zero forcing matrix

GTx is given by

GTx =




F
H
1

F
H
2

...

F
H
K




+

. (7)

The columns of the matrix GTx correspond to the transmit sig-

natures of the relay signals. The receive zero forcing followed

by the transmit zero forcing is called transceive zero forcing

and is denoted by the matrix

G = GTxGRx. (8)

Note that, when the precoding vectors Vj are chosen arbitrarily,

it cannot be guaranteed that the matrix G is block-diagonal.

However, we can design the the precoding matrices Vj for

j = 1, 2, . . . ,K and hence, the receive signatures HjVj such

that G is block-diagonal.

B. Cooperative Zero Forcing Scheme

In this section, the proposed cooperative zero forcing scheme

is described. The main idea is as follows: The relays alone

cannot perform transceive zero forcing due to the block di-

agonal structure of the matrix G. The nodes cooperate with

the relays in choosing their precoding matrices to achieve

zero interference at the destination nodes. Perfect channel

knowledge is assumed at the source nodes and at the relays.

For zero interference at the destination nodes, the relay should

transmit the signal from source node Dj in a direction per-

pendicular to the channels of all the other K − 1 destination

nodes. These transmission directions also called the transmit

zero forcing directions or the transmit signatures are given

by the columns of the matrix GTx. For any given choice of

precoding matrices Vj for j = 1, . . . ,K, the signals received

at the relays are in the directions given by the columns of the

W =
[

H1V1 . . . HKVK

]
. The relays with the block-

diagonal matrix G should perform a linear transformation that

maps the receive signatures to the transmit signature in a

QR dimensional space. Due to the block-diagonal structure

of the matrix G, the number of variable in the matrix G is

QR2. Hence, only R receive signatures can be mapped to

their corresponding desired transmit zero forcing directions.

Fortunately, matrix G is a full rank matrix. This means the other

Kd − R receive signatures map to some linearly independent

directions, but not necessarily to the desired transmit signatures.

By modifying the precoding matrices at the source nodes, the

receive signatures can be altered. In the proposed scheme,

the sources have sufficient number of antennas so that the

precoding vectors can be chosen such that designing the linear

transformation for the first R receive signatures also maps

the other Kd − R receive signatures to their desired transmit

zero forcing directions. The number of antennas required at

the source nodes is derived later. The cooperative zero forcing

is performed in two steps. First, the precoders are designed.

Second, the linear signal processing matrices G1,G2, . . . ,GQ

are determined.

1) Transmit Precoders: In this section, the precoders at the

source nodes are designed such that when the relay performs

transceive zero forcing for the first R data streams, all the other

Kd−R data streams are automatically transceive zero forced.

Let the columns of the matrix

GTx =
[

Z1 . . . ZK

]
=




F
H
1

F
H
2

...

F
H
K




+

(10)

denote the transmit signatures. It has to be noted that if

we assume i.i.d. MIMO channel model [8] and independent

destination nodes, then Zj for j = 1, 2, . . . ,K obtained from

(10) has rank d with a probability of one. The receive signatures

at the relay are given by W =
[

H1V1 . . . HKVK

]
. The

objective is to design the matrices Vj for j = 1, 2, . . . ,K such

that

GTx = GW (11)

is satisfied for a block-diagonal matrix G. The transmit-receive

signature pair corresponding to node-pair j can be written as

Zj = GHjVj (12)

for j = 1, 2, . . . ,K. Equation (12) means that the receive

signatures HjVj are mapped to the transmit signatures Zj . In

general, only the subspace spanned by the receive signatures

HjVj needs to be equal to the subspace spanned by the

transmit signatures Zj to achieve zero interference at the

destination nodes. Equation (12) can be written in terms of

the linear signal processing matrices of each relay as



Z
1
j

Z
2
j

...

Z
Q
j


 =




G1 0 . . . 0

0 G2 . . . 0

...
...

0 . . . 0 GQ







H1j

H2j

...

HQj


Vj (13)

for j = 1, 2, . . . ,K. Here, Z
q
j corresponds to the d transmit

signatures of the qth relay. As each of the relay spans an

R dimensional signal space and R < Kd, the Kd transmit

signatures
[

Z
q
1 . . . Z

q
K

]
of the qth relay will be linearly

dependent on each other. Let n = R/d. Then R = nd
transmit signatures will be linearly independent of each other

and the other Kd − R transmit signatures will be linearly

dependent on the first nd transmit signatures. In general, ⌊n⌋ d
transmit signatures correspond to ⌊n⌋ destination nodes and

the other (n − ⌊n⌋) d transmit signatures correspond to the

(⌊n⌋ + 1)th destination node. For simplicity, throughout the

rest of the paper we assume R to be an integer multiple of

d. Then the transmit signatures corresponding to n destination






(
C

1T
1n+1 ⊗ H11

)
. . .

(
C

1T
nn+1 ⊗ H1n

)
−

(
I

T ⊗ H1n+1

)
0 · · · 0

...
...(

C
QT
1n+1 ⊗ HQ1

)
. . .

(
C

QT
nn+1 ⊗ HQn

)
−

(
I

T ⊗ HQn+1

)
0 · · · 0

...
...(

C
QT
1K ⊗ HQ1

)
. . .

(
C

QT
nK ⊗ HQn

)
0 . . . 0 −

(
I

T ⊗ HQK

)




︸ ︷︷ ︸




vec (V1)
vec (V2)

...

vec (VK)


 = 0 (23)

S

nodes will be linearly independent of each other and the

transmit signatures corresponding to the other K−n destination

nodes can be written as a linear combination of the transmit

signatures corresponding to the first n destination nodes. This

is represented by

Z
q
i =

[
Z

q
1 . . . Z

q
n

]
T

q
txi (14)

where T
q
txi for q = 1, 2, . . . , Q and i = n + 1, n +

2, . . . ,K gives the linear dependence relation between Z
q
i

and
[

Z
q
1 . . . Z

q
n

]
. Similarly, the linear dependency of the

receive signatures can be denoted by

HqiVi =
[

Hq1V1 . . . HqnVn

]
T

q
rxi (15)

for i = n+1, . . . ,K. Without loss of generality, we will assume

that the matrices G1,G2, . . . ,GQ will be chosen such that the

first R columns of the matrix equality in Equation (11) will

be satisfied. That is, the matrix G maps the first R receive

signatures to the first R transmit signatures. This is given by

Z
q
l = GqHqlVl (16)

for q = 1, 2, . . . , Q and l = 1, 2, . . . , n. The other Kd − R
receive signatures will be mapped to the corresponding Kd−R
transmit signatures if and only if

Z
q
i = GqHqiVi (17)

holds for q = 1, 2, . . . , Q and i = n + 1, n + 2, . . . ,K.

The matrices Gq for q = 1, 2 . . . Q denote a set of linear

transformations and hence, in order to satify (17),

T
q
txi = T

q
rxi (18)

need to hold for q = 1, 2, . . . , Q and i = n + 1, n + 2, . . . ,K.

From (14), (15) and (18), we get

HqiVi =
[

Hq1V1 . . . HqnVn

] [
Z

q
1 . . . Z

q
n

]−1
Z

q
i .

(19)

Let 


C
q
1i
...

C
q
ni


 =

[
Z

q
1 . . . Z

q
n

]−1
Z

q
i . (20)

Then, (19) can be written as

HqiVi =
[

Hq1V1 . . . HqnVn

]



C
q
1i
...

C
q
ni


 . (21)

Vectorizing the matrices on both sides of (21) and applying the

property vec (AXB) =
(
B

T ⊗ A
)

vec (X), we get

(
I

T ⊗ Hqi

)
vec (Vi) =

(
C

qT
1i ⊗ Hq1

)
vec (V1) + . . .

+
(
C

qT
ni ⊗ Hqn

)
vec (Vn) (22)

for q = 1, 2, . . . , Q and i = n + 1, n + 2, . . . ,K. Here, ⊗
denotes the Kronecker product. Equation (22) is a system of

linear homogeneous equations which can be written as given in

(23). The dimension of matrix S is (Kd−R)QR×KNd. The

number of rows and columns denotes the number of equations

and variables, respectively, in (23). A non-trivial solution for

(23) exists when the number of variables is greater than the

number of equations. This is given by

KNd > (Kd − R)QR. (24)

Equation (24) gives the feasibility condition for the proposed

cooperative zero forcing scheme. It has to be noted Zj for

j = 1, 2, . . . ,K obtained from (10) has rank d with a probabil-

ity of one. Hence, (13) guarantees that Vj for j = 1, 2, . . . ,K
is of rank d. Also, note that the number N of antennas

required at each source node is directly proportional to the

number of relays. This is due to the fact that when the number

of relays increases, the dimension of the space where the

linear transformation is performed also increases. Hence, more

variables are required at the source nodes to satisfy (18). In

this paper, we assume that Q is equal to the minimum number

of relays required to satisfy the condition QR ≥ Kd. That is

QR ≥ Kd > (Q − 1)R. If there are Q′ > Q relays available

in the system, the extra Q′ − Q relays will be switched off.

For particular integer values of R,N, d, K and Q, (24) can

be satisfied only with strict inequality. In this case, there is a

possibility to choose the transmit precoder matrices from the

solution space of (23). Let the span of the columns of the matrix

A =
[

A
T
11 A

T
12 · · · A

T
1d · · · A

T
Kd

]T
= null(S)

(25)

denote the solution space, then the mth column of the precoding

matrix Vj is obtained as

vjm = Ajmt, (26)

where vector vjm is a linear combination of the columns of the

matrix Aj defined by the vector t. Any arbitrary choice of t



is a solution for (23). The vector t can be chosen to maximize

a given objective function. For example, t can be chosen such

that the total signal power received at the relays is maximized.

That is

topt =argmax
t

K∑

j=1

d∑

m=1

t
H
A

H
jmH

H
j HjAjmt

tHAH
jmAjmt

. (27)

The optimization problem described in (27) is non-convex [9]

and gradient based methods described in [10] can be used to

find the local maxima. In [10], it has been shown that the local

maxima provides a significant gain in terms of the sum rate

when compared to an arbitrary choice of t.

In order to satisfy the transmit power constraint at each node,

the precoder matrices need to be normalized based on the total

power available at each node. When the precoders are multipled

by some scalars, the corresponding transmit signatures also

have to be multiplied by the corresponding scalars so that (18)

holds. Let Pt denote the transmit power available at each node.

Assume uniform power allocation across the d data streams.

Then the precoders are normalized as follows:

V
norm
j =

√
Pt

d
Vj

(
Diag

(
V

H
j Vj

))− 1

2 (28)

where Diag(.) replaces all off-diagonal elements of the matrix

within the brackets by zeros. For (18) to hold, the transmit

signatures have to be normalized as follows:

Z
norm
j =

√
Pt

d
Zj

(
Diag

(
V

H
j Vj

))− 1

2 (29)

for j = 1, 2, . . . ,K.

2) Relay Processing Matrices: In this section, the relay pro-

cessing matrices G1,G2, . . . ,GQ are determined. In Section

III-B1, the precoders have been designed such that if the relays

map the first R receive signatures to the first R transmit zero

forcing directions, then the other Kd − R receive signatures

will be automatically mapped to their corresponding Kd − R
transmit zero forcing directions. In order for the relays to map

the first R receive signatures to the first R transmit signatures,

the following equation should hold:
[

Z
q
1 . . . Z

q
n

]
= Gq

[
Hq1V1 . . . HqnVn

]
(30)

for q = 1, 2, . . . , Q. Therefore

Gq =
[

Z
q
1 . . . Z

q
n

] [
Hq1V1 . . . HqnVn

]−1
.
(31)

The relays have a total transmit power constraint. The matrix G

can be scaled to satisfy this power constraint without disturbing

the zero forcing solutions. Note that the optimization problem

described in (27) is used only to optimize over the many

possible solutions. For the cooperative zero forcing problem, we

need only one arbitrary zero forcing solution and the method

described above provides a closed form solution. Hence, the

computational complexity is very low compared to [6].

Interference alignment in the reciprocal network: Also

for the case that the transmitters have M = d antennas and the

receivers have N antennas, the proposed method can be used to

achieve interference-free transmission. In this case, the relays

cooperate with the destination nodes to perform interference

alignment at the destination nodes. It has to be noted that the

source nodes do not need any channel knowledge and the relays

receive the linear combination of the signals from the source

nodes. Each of the relays cannot decode the signals itself, but

the relays can cooperate with each other to perform interference

alignment at the destination nodes, making it possible for the

destination nodes to decode the useful signal. To obtain the

interference alignment solution, first the network is converted

into its reciprocal network with N antennas at the transmitter

and M antennas at the receivers, with the channel between the

source nodes and the relay nodes given by the Hermitian of the

corresponding channel between the relays and the destination

nodes in the original network. The channel between the relays

and the destination nodes in the reciprocal network is given

by the Hermitian of the corresponding channel between the

source and the relay nodes in the original network. After this

conversion, the proposed cooperative zero forcing method can

be used to obtain the source precoders and the relay processing

matrices of the reciprocal network. The relay processing matri-

ces and the receive zero forcing matrices of the original network

are then given by the Hermitian of the corresponding relay

processing matrices and the source precoders, respectively, in

the reciprocal network.

IV. PERFORMANCE ANALYSIS

In this section, the sum rate performance of the proposed

cooperative zero forcing (CZF) scheme is investigated. For

the simulation, we consider a K = 3 node pairs scenario.

Each source node wants to transmit d = 1 data stream to

its destination node. There are Q = 2 relays that assist in

the communication. Each of the source and relay nodes has

N = R = 2 antennas. The destination nodes have M = d = 1
antenna. According to (24), this scenario is feasible. In total,

three data streams are transmitted in two time slots. Two

reference methods are considered to compare with the sum rate

performance of the proposed CZF scheme. The first reference

method (SVD ZF TDMA) is based on transceive zero forcing

[5] for a one way relaying scenario. The source nodes transmit

their data streams in the directions corresponding to the largest

singular values of the channel from the source node to the

relays. The relays spatially separate the data streams and

perform transceive zero forcing. In this method, only two node

pairs can be supported at a time, additional node pairs are

separated by time division multiple access (TDMA). The main

difference between the CZF and SVD ZF TDMA scheme is

that in CZF, the transmit precoders are used for increasing the

number of degrees of freedom defined as the number of data

streams in the system while in SVD ZF TDMA, the transmit

precoders are used for a beamforming gain.

The second reference method is based on iterative minimiza-

tion of the sum mean square error (IterativeMMSE) proposed

in [6]. In this method, the transmit precoders, relay filters and

receive filters are optimized iteratively. In this method, all the

three node pairs transmit at the same time. 50 iterations are



Fig. 2. Sum rate performance for a 3 node pairs scenario with N = 2, R =

2, Q = 2 and M = d = 1

considered for the simulation. Simulation results show that

typically after 50 iterations the residual MMSE converges to

a small value and remains almost constant.

Figure 2 shows the sum rate performance of each method

as a function of P/σ2. P is the transmit power at each node

in the CZF scheme and in the IterativeMMSE scheme. In the

SVD ZF TDMA scheme, as the nodes are sometimes silent

due the TDMA, the power available at each node is scaled

to 3P/2 in order to have a fair comparison. The noise power

at each node is assumed to be the same and is denoted by

σ2 = σ2
1 = σ2

2 . The relays have a total transmit power 3P in

all three cases. The MIMO channel matrices between the nodes

and the relay are normalized such that in the CZF scheme, on

an average, the transmitted signal power is the same as the

received signal power. The sum rate is calculated as an average

value from 103 channel realizations generated randomly using

the i.i.d. frequency-flat Rayleigh fading MIMO channel model

[8]. The red curve in Figure 2 shows the performance of the

proposed scheme. The vector t is arbitrarily chosen. The blue

and the green dashed lines correspond to the SVD ZF TDMA

and IterativeMMSE schemes, respectively. It can be clearly seen

that the proposed cooperative zero forcing scheme outperforms

both the reference schemes. At high SNR values, the slopes of

CZF and SVD ZF TDMA correspond to the total number of

data streams transmitted over two time slots but the sum rate

of IterativeMMSE scheme converges to a finite value. This is

due to the fact that the iterativeMMSE method obtains only

a local minimum and hence, there is an interference leakage.

Furthermore, the correlations of the interfering signals coming

through different relays are not considered in [6].

Figure 3 shows the sum rate performance when K = 3, N =
3, R = 4, Q = 2 and M = d = 2. From (24), it can be

seen that this scenario is feasible. Note that for doubling the

number of data streams, it is not necessary to double the number

of antennas at each node. From Figure 3 it can be seen that

CZF outperforms SVD ZF TDMA since with CZF, 6 degrees

of freedom are achieved while with SVD ZF TDMA, only 4

degrees of freedom are achieved.

V. CONCLUSION

In this paper, one way relaying in a K node pairs multi-

ple relay scenario is considered. A cooperative zero forcing

Fig. 3. Sum rate performance for a 3 node pairs scenario with N = 3, R =

4, Q = 2 and M = d = 2

scheme, where the source nodes and the relay nodes cooperate

to perform zero forcing at the destination nodes, is proposed.

Through this cooperative method, zero interference at each

of the destination nodes can be achieved. Less antennas are

required at the relays compared to the case where the nodes

and relays do not cooperate to perform zero forcing. This means

that for a given number of antennas at the nodes and the relays,

more users can be supported compared to the case without the

cooperation. The feasibility condition KNd > (Kd−R)QR is

derived. The simulation results show that the proposed scheme

achieves more degrees of freedom and hence, achieves higher

sum rate in the system as compared to reference schemes.
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