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Abstract—In this work, the combination of one-way and two-
way relaying is examined in a scenario where two multi-antenna
nodes exchange information under an asymmetric rate constraint
via a half-duplex non-regenerative multi-antenna relay. Two-way
relaying overcomes the multiplexing loss of one-way relaying, but
additional optimizations are required to fulfill the asymmetric
rate constraint. To enable the consideration of suboptimal low-
complexity approaches, a hybrid one-way / two-way scheme is
suggested which ensures that the asymmetric rate constraint
can always be fulfilled. The optimization problem of maximizing
the overall sum rate for the considered scenario is formulated
and an approach for transceive filter and power optimization
considering the asymmetric rate constraint is derived. Simulation
results for different link qualities and rate constraints confirm the
theoretical considerations and show that the proposed algorithm
performs close to the upper bound in case of high asymmetric
rate constraints or highly asymmetric channels.

I. INTRODUCTION

In scenarios where a direct communication between two

nodes S1 and S2 is not possible, a relay station RS can be

inserted in between the nodes and a two-hop relaying scheme

can be applied. In this paper, non-regenerative two-hop relaying

is considered, i.e., linear signal processing is applied at RS.

RS is assumed to be half-duplex and time-division duplex is

used. Conventional two-hop relaying, i.e., one-way relaying,

requires four time slots to establish a bidirectional communi-

cation between the nodes, because each node requires separate

orthogonal resources for the transmission and reception to and

from RS, respectively. To overcome this drawback, the authors

in [1] proposed a two-way relaying scheme requiring only two

time slots to support the bidirectional communication. In two-

way relaying, S1 and S2 transmit simultaneously to RS, which

receives, linearly processes and retransmits the superimposed

signals. The desired signal at each node can be recovered

by subtracting the back propagated self-interference in the

receive signal, which requires channel state information (CSI)

at the nodes. Two-way relaying is in particular suitable for the

bidirectional symmetric transmission between two nodes and

recent transceive filter approaches maximize the overall sum

rate or minimize the mean square error without considering the

individual rates.

The authors of [2] compare different transceive filters and

derive sum-rate upper bounds for a two-way relaying scenario

with single-antenna nodes and a multi-antenna relay. In [3],

multi-antenna one-way and two-way relaying is extensively

studied. In most cases, it is assumed that RS is equipped

with at least the total number of antennas of both nodes and

different transceive filters are compared. The transceive filters

are designed to maximize the sum rate or to minimize the

mean square error without considering any asymmetric rate

constraint. The authors of [4] present an overview of recent

advances in non-regenerative two-hop relaying and state that

in multi-antenna two-way relaying, 2N data streams can be

simultaneously transmitted if the number of antennas at RS is

larger or equal to 2N . In [5] and [6], the optimal transceive filter

at RS is derived for one-way relaying with multiple antennas. A

relay transceive strategy for a multi-antenna scenario maximiz-

ing the weighted sum of the Frobenius norms of the effective

single-user channels is introduced in [7] and extended in [8].

The authors of [9] characterize the capacity region of non-

regenerative two-way relaying for single antenna nodes S1 and

S2 and a multi-antenna relay RS. For this scenario, they present

the optimal relay transceive filter structure to attain a boundary

rate pair which is equivalent to the sum rate maximization under

an asymmetric rate constraint. So far, a combination of one-way

and two-way relaying as well as an asymmetric rate constraint

in a multi-antenna scenario has not been examined.

In this paper, a scenario is considered where two multi-

antenna nodes exchange information via a half-duplex non-

regenerative multi-antenna relay under an asymmetric rate

constraint, which means that the instantaneous data rate from

S1 to S2 has to be r times the instantaneous data rate from

S2 to S1, 1 ≤ r ≤ ∞. The main objective is to consider this

asymmetric rate constraint in the sum rate maximization with

a limited transmit power at each node. In one-way relaying,

the asymmetric rate constraint can be fulfilled by varying

the corresponding time slot durations. Furthermore, transceive

filters which are optimized for each unidirectional transmission

can be applied at RS. In two-way relaying, the asymmetric rate

constraint has to be fulfilled by optimizing the bidirectional

transceive filter at RS and by reducing the power of one node.

Two-way relaying overcomes the multiplexing loss of one-way

relaying, but additional optimizations are required to fulfill the

asymmetric rate constraint as described above. To enable the



Fig. 1. Bidirectional two-hop relaying scenario.

consideration of suboptimal low-complexity approaches which

cannot fulfill the asymmetric rate constraint by pure two-way

relaying, a hybrid one-way / two-way scheme is suggested

which ensures that the asymmetric rate constraint can always

be fulfilled.

In this paper, the focus is on scenarios where the number

of antennas at RS is lower than the total number of antennas

at the nodes and, therewith, lower than the number of data

streams which shall be multiplexed during the two-way relaying

phase. This is possible, because perfect CSI is assumed and the

nodes can subtract the self-interference in the receive signal.

Transceive filters which are based on the combined relay chan-

nel [3] cannot be applied in the considered scenario. Therefore,

a different transceive filter design method is proposed, which is

based on singular value decomposition (SVD) of the individual

channels.

The paper is organized as follows. In Section II, the system

model and the hybrid one-way / two-way scheme are given.

The problem of maximizing the sum rate under the asymmetric

rate constraint and the transceive filter and power optimization

approaches are presented in Section III. Simulation results in

Section IV confirm the analytical investigations and Section V

concludes the paper.

Throughout this paper, boldface lower case and upper case

letters denote vectors and matrices, respectively, while normal

letters denote scalar values. The superscripts (·)T, (·)∗ and (·)H

stand for matrix or vector transpose, complex conjugate and

complex conjugate transpose, respectively. The operator [x]+

returns x if x ≥ 0 and returns 0 if x < 0.

II. SYSTEM MODEL & HYBRID RELAYING SCHEME

As shown in Figure 1, the two-hop bidirectional communica-

tion between the half-duplex nodes S1 and S2 via a half-duplex

relay RS is considered. The transmit power at each node and

at RS is limited by PNode and PRS, respectively. Furthermore,

it is assumed that each node uniformly allocates its power over

its antenna elements. The number of antenna elements at S1

and S2 is assumed to be equal and is given by M and the

number of antenna elements at RS is given by L. Each node

transmits M data streams at a time and perfect CSI is assumed.

To support the multiplexing of M data streams, the number L
of antenna elements at RS has to be at least equal to M . In

Fig. 2. Hybrid one-way / two-way relaying scheme.

this paper, L ≥ M is considered. Typical two-way relaying

algorithms require L ≥ 2M antenna elements, e.g., [3],[4],

because the combined 2M × L channel is considered at RS.

However, if perfect CSI is assumed, the nodes can subtract the

self-interference in the receive signal and only M data streams

have to be separated which only requires M antenna elements

at RS even for two-way relaying.

The main objective of this paper is to consider an asymmetric

rate constraint in the system. The instantaneous data rate from

S1 to S2 has to be r times the instantaneous data rate from

S2 to S1 which is indicated by the thickness of the arrows

in Figure 1, 1 ≤ r ≤ ∞. As explained in the introduction, a

combination of one-way and two-way relaying is proposed to

enable the consideration of suboptimal algorithms which cannot

fulfill the asymmetric rate constraint by pure two-way relaying.

Therefore, a hybrid one-way / two-way scheme is suggested and

explained in the following.

The overall bidirectional communication is subdivided into

two phases as shown in Figure 2. In the first phase, a bidirec-

tional communication between S1 and S2 is enabled by using

the two-way relaying scheme. Therefore, two time slots are

required in the first phase. The superimposed signal of S1 and

S2 is received by RS in the first time slot and is transmitted

after linear signal processing in the second time slot. The overall

duration of the first phase is given by αT , 0 ≤ α ≤ 1, where

T is the overall duration of both phases. In the first phase, the

transceive filter at RS can be optimized for the bidirectional

transmission and the powers of the nodes can be varied to

influence the achievable instantaneous data rates. The second

phase conduces to fulfilling the asymmetric rate constraint. In

the second phase, a unidirectional communication is established

using half of the typical one-way relaying scheme. This phase

can also be separated into two time slots. In the first time slot,

RS receives the signal from Sk, k = 1, 2, which has to transmit

additional symbols after the first phase to fulfill the asymmetric

rate constraint. In the second time slot, the signal is transmitted

from RS to Si, i = 1, 2, i �= k. The overall duration of the

second phase is given by (1 − α)T and the duration is zero

if the asymmetric rate constrained was already fulfilled in the

first phase. During the second phase, the transceive filter at

RS can be optimized for the unidirectional transmission and

the maximum transmit power is used at Sk and zero transmit



power is used at Si. The overall sum rate is finally given by

the sum of the rates in the first and in the second phase.

The channels H1 ∈ C
L×M and H2 ∈ C

L×M from S1 to RS

and S2 to RS, respectively, are assumed to be constant during

the two phases and channel reciprocity is assumed. The system

equations for the two-way relaying phase are presented in the

following where both nodes are simultaneously transmitting to

RS. The transmitted symbols of S1 and S2 are contained in the

vectors s1 and s2, respectively. Using the transmit matrices Q1

and Q2 and using the transmit powers P1 and P2 at S1 and S2,

respectively, the received baseband signal at RS is given by

yRS = H1

√

P1Q1s1 + H2

√

P2Q2s2 + nRS, (1)

where nRS represents the complex white Gaussian noise vector

at RS.

RS linearly processes the received signal and the relay

operation can be split into three parts, namely, receive filtering

expressed by GR, weighting expressed by W and transmit

filtering expressed by GT. Therefore, the transceive filter at

RS is given by

G = γGTWGR, (2)

where γ is a scalar value to satisfy the relay power constraint.

It is given by

γ =

√

PRS
∑2

i=1 ||GTWGRHiQi||22Pi + ||GTWGR||22σ
2
n,RS

.

(3)

The relay transmits the linearly processed version of yRS to

S1 and S2. The received signal at Sk, k = 1, 2, is given by

ySk = HT
k G(HkQksk

√

Pk + HiQisi

√

Pi + nRS) + nSk,

i = 1, 2, i �= k, (4)

where nSk represents the complex white Gaussian noise vector

at Sk. Assuming that HT
k GHk is perfectly known at Sk, the

back-propagated self-interference can be canceled [10] and the

received signal at Sk reduces to

ySk = HT
k G(HiQi

√

Pisi + nRS) + nSk. (5)

The system equations for the second phase where unidirec-

tional one-way relaying is used are identical to the equations

in the first phase except that in the second phase the power P1

or P2 of one node S1 or S2, respectively, is set to zero and no

self-interference cancellation has to be performed at the nodes.

The transceive filter matrix G is also different in both phases,

but this does not affect the equations, because up to now a

general definition of G is used.

Assuming that the noise at RS and at the nodes is additive

white Gaussian with the variances σ2
n,RS and σ2

n, respectively,

the matrices

Ai→k = HT
k GHiQi, (6)

Bk = σ2
n,RSH

T
k GGHH∗

k + σ2
nIM , (7)

can be defined, describing the overall channel from Si to Sk and

the noise autocorrelation matrix at Sk, respectively. Similarly to

the considerations in [9], the information-theoretic limits shall

be considered. Therefore, it is assumed that optimal Gaussian

codebooks are used at S1 and S2. Under these assumptions, the

rate from Si to Sk in the first or in the second phase is given

by

CSi→Sk
1st/2nd phase =

1

2
log2(det(IM + PiAi→kA

H
i→kB

−1
k )),

i, k = 1, 2, i �= k, (8)

where the factor 1/2 is needed because two time slots are used

in each phase. The overall sum rate for the hybrid scheme is

given by the weighted sum of the two-way rates from S1 to S2

and from S2 to S1 in the first phase and the unidirectional one-

way rate from Sk to Si in the second phase as shown in Figure

2. It is dependent on which node has to transmit additional

symbols after the first phase to fulfill the asymmetric rate

constraint. In case that Sk has to transmit additional symbols,

it is given by

Csum = α
(

CS1→S2
1st phase + CS2→S1

1st phase

)

+ (1 − α)
(

CSk→Si
2nd phase

)

.
(9)

III. SUM RATE MAXIMIZATION

The maximization of the sum rate under the asymmetric rate

constraint can be achieved by optimizing the transceive filter

at RS for each phase and by adapting the power of one node

in the first phase. The transmit filters which are assumed to be

unitary matrices as well as the receive filters at the nodes do

not affect the information-theoretic limits of the sum rate. A

general notation of the optimization problem is given by

max
α,P1,P2,G1st,G2nd

Csum

subject to:

Pi ≤ PNode, i = 1, 2,
2

∑

i=1

‖GHi‖
2

2 Pi + tr(GGH) ≤ PRS,

CS1→S2 = r · CS2→S1, (10)

where CSi→Sk is the sum of the rates from Si to Sk during

both phases. The parameter α has to be calculated for every

transceive filter and power combination in a way that the

considered combination fulfills the asymmetric rate constraint.

The maximization of the overall sum rate is split into three

parts. First, the second phase is considered and the transceive

filter at RS is optimized for the unidirectional transmission.

Second, the bidirectional transmission in the first phase is

considered and the transceive filter at RS and the node powers

are optimized. Third, the overall sum rate is calculated by a

weighted combination of the rates in the first phase with the

unidirectional rate in the second phase. The maximization of

the sum rate is performed by numerical optimization of the

transceive filter at RS and of the node powers in the first phase.



A. Transceive filter optimization in the second phase

The optimization of the transceive filter matrix in the second

phase is already solved in [5] and [6] based on singular value

decomposition (SVD) of the first hop and second hop channel.

The SVD of the channels is given by

Hi = UiΛ
1/2

i VH
i , i = 1, 2, (11)

where Ui contains the left singular vectors, Vi contains the

right singular vectors and Λi contains the corresponding eigen-

values of the channel Hi in decreasing order. In this paper, the

eigenmodes of the first and of the second hop channel are sorted

in decreasing order and are pairwise combined. The power is

assigned to each channel eigenmode by the diagonal weighting

matrix Wi which results in the transceive filter

G2nd = Gi→k = γU∗

kWiU
H
i ,

i, k = 1, 2, i �= k, (12)

for the unidirectional transmission from Si to Sk with γ from

(3) for Pi = PNode and Pk = 0. The mth component in the

diagonal weighting matrix Wi given by [6] is

wm =

√

√

√

√

√

√

√

[

√

µκ
λi,m

λk,m
+

(

κ
λi,m

2λk,m

)2

− κ
λi,m

2λk,m
−

σ2
n

λk,m

]+

(PNode/M)λi,m + σ2
n,RS

,

κ =
PNodeσ

2
n

Mσ2
n,RS

,

m = 1, 2, ..., M, (13)

where µ is a constant to fulfill the power constraint at RS for

γ = 1 and λi,m is the mth element on the diagonal of Λi. The

unidirectional rate is calculated by (8).

B. Transceive filter and node power optimization in the first

phase

For the transceive filter optimization in the first phase, the

basic idea is to use a weighted combination of unidirectional

transceive filters at RS. To solve this problem, the receive and

transmit filters GR and GT at RS are designed independent

of the rate constraint and the adaptation to the rate constraint

is performed by the weighting matrix W. The receive and

transmit filters are chosen to exploit the eigendirections of the

channels H1 and H2 similar to the above mentioned filter for

the second phase. The relay receive and transmit matrices in

the first phase are given by

GR =

(

UH
1

UH
2

)

,

GT = (U∗

2,U
∗

1) . (14)

The singular vectors contained in U1 are generally not orthog-

onal to the singular vectors contained in U2. The eigenmodes

of the first and of the second hop channel are sorted in

decreasing order and are pairwise combined for each direction.

Furthermore, the power which is allocated to the eigenmodes

at RS is given by a weighted combination of the weighting

matrices which were described in (12), (13). Therefore, the

weighting matrix reduces to a diagonal matrix with the structure

W =

(

w1W1 0M×M

0M×M (1 − w1)W2

)

, (15)

where w1 is the weight to perform the adaptation to the

asymmetric rate constraint, 0 ≤ w1 ≤ 1. The overall transceive

filter G1st at RS is given by (2) with γ from (3). The effect

of varying w1 on the rates CS1→S2 and CS2→S1 depends on

the relation between the channels H1 and H2. If the singular

vectors of the channels are parallel to each other, the variation

of w1 has only a small influence on the rates which depends on

the difference between the power allocations by W1 and W2.

Furthermore, the optimization of the powers P1 and P2 is

considered in the first phase. Only the power Pi of one node

has to be adapted in the first phase, because the power of the

node whose corresponding rate has to be increased to fulfill

the asymmetric rate constraint by pure two-way relaying is

kept at PNode. Decreasing Pi decreases the rate CSi→Sk and

it also increases CSk→Si, because more power can be used at

RS for the amplification of the signal received from Sk. The

bidirectional rates are calculated by (8) using a fixed weight

w1 and fixed transmit powers at the nodes. The maximization

of the sum rate is performed by numerical optimization of the

weight w1 and of the node power Pi.

C. Numerical maximization of the sum rate under the asym-

metric rate constraint

For every value of the weight w1 combined with fixed

transmit powers at the nodes the bidirectional rates in the first

phase can be calculated. These rates are combined with the

unidirectional rate of the second phase as described in (9) to

fulfill the asymmetric rate constraint. The weighting factor α
for CS1→S2

1st phase ≤ r · CS2→S1
1st phase is given by

α =
CS1→S2

2nd phase

r · CS2→S1
1st phase − CS1→S2

1st phase + CS1→S2
2nd phase

, (16)

and in all other cases it is given by

α =
CS2→S1

2nd phase

CS1→S2
1st phase/r − CS2→S1

1st phase + CS2→S1
2nd phase

. (17)

The combination of the rates in the first phase with the rate

in the second phase results in the sum rate which shall be

maximized. The maximum is computed by a two-dimensional

search over the weight w1 and the transmit power Pi of one

node. The corresponding algorithm is named HybridRateMax

in the following. To reduce the computational complexity, it is

also possible to perform the optimization of the weight and the

optimization of the node power separately. An algorithm which

first performs the optimization of w1 and optimizes the node

power Pi afterwards is named HybridRateMaxDecoupled.



D. Upper bounds for the considered algorithms

In the considered scenario, the transmit powers of S1 and

S2 have to be adapted to enable an optimal transmit power

distribution at RS. The adaptation can only be performed by

transmit power reduction at the nodes, which reduces the overall

power used in the system. Therefore, a sum rate upper bound

is derived for the proposed algorithm which corresponds to the

sum rate in the case that the full power can be used in the

system and the relay can optimally distribute its power to both

directions. The HybridRateMax bound is given by

Csum,HRM bound =α
[

CS1→S2
1st phase(G(βPRS))

+ CS2→S1
1st phase(G((1 − β)PRS)))

]

+(1 − α)CSi→Sk
2nd phase(Gi→k, PRS), (18)

where CSi→Sk
1st phase(G(βPRS)) is the capacity from Si to Sk for

a transceive filter G which uses the contribution βPRS of the

overall relay power PRS to support the transmission from Si
to Sk. Therefore, the transceive filter G fulfills the following

condition

βPRS = ||GHiQi||
2
2Pi + β||G||22σ

2
n,RS, (19)

where β is also included in the term of the amplified noise to

guarantee that the overall noise amplification is identical to

that in the bidirectional transmission.

Furthermore, a two-way upper bound is considered for com-

parison during the simulations. The two-way upper bound is

given by the sum rate of the two unidirectional rates from S1

to S2 and S2 to S1. Therefore, unidirectional transceive filters

are used at RS as described in (12). These transceive filters

optimally share the overall transmit power at RS to fulfill the

asymmetric rate constraint. The sum rate is given by

Csum,2way bound =CS1→S2
2nd phase(G1→2(βPRS))

+CS2→S1
2nd phase(G2→1((1 − β)PRS)). (20)

IV. SIMULATION RESULTS

In this section, numerical results on the achievable sum rates

for different two-hop relaying algorithms are compared. For the

simulations, i.i.d. Rayleigh fading channels are considered with

an average path loss ploss,k between Sk and RS. Therefore, the

signal to noise ratio (SNR) for Sk is defined as

SNRk =
ploss,kPNode

σ2
RS

. (21)

It is assumed that PNode = PRS and σ2
RS = σ2

n. Each node

is equipped with M = 4 antenna elements and the relay is

equipped with L = 6 antenna elements. The algorithms which

are compared during the simulations are the HybridRateMax

algorithm together with its upper bound and the version Hy-

bridRateMaxDecoupled. Furthermore, an algorithm which only
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Fig. 3. Average sum rates for different rate constraints, M = 4, L = 6,
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optimizes for w1 and uses the maximum transmit power at each

node is considered. This algorithm is named Opt(w1) in the

following. The lower bound is given by pure one-way relaying

and the upper bound is given by the two-way upper bound

described in the last paragraph of Section III-D.

Figure 3 shows the sum rates for the variation of the asym-

metric rate constraint r and Figure 4 shows the corresponding

average time fractions 1− α of the second phase. The average

sum rates achieved by pure one-way relaying are independent

of the rate constraint if SNR1 equals SNR2, because the

asymmetric rate constraint is fulfilled by a variation of the

time slots for each direction of transmission. The gap between

HybridRateMax and the HybridRateMax bound is due to the

node power reduction of HybridRateMax to achieve an optimal

transmit power distribution at RS. The proposed transceive filter

design in the first phase has its weakness if the channels and the



rates which shall be supported are approximately symmetric.

Therefore, the average time fractions of the second phase are

not zero for small values of r and the gap between the algo-

rithms and the two-way upper bound is large in the considered

scenario. For r ≥ 2, the sum rates of HybridRateMax and the

HybridRateMax bound are given by pure two-way relaying. If

r increases, the gap to the two-way upper bound decreases. For

high values of r, HybridRateMax achieves sum rates close to

the two-way upper bound, because one rate becomes more and

more the limiting rate and the transceive filter is focused on

this direction of transmission. Therefore, the amount of power

which is received and transmitted through the eigenvectors of

the opposite direction is decreased.

For HybridRateMaxDecoupled and Opt(w1) the time frac-

tions of the second phase increase with the asymmetric rate

constraint r. HybridRateMaxDecoupled has a lower compu-

tational complexity and achieves slightly degraded sum rates

compared to HybridRateMax. Opt(w1) requires the highest time

fractions of the second phase, because the node powers cannot

be adapted to fulfill the rate constraint. The achieved sum rates

do not significantly get closer to the two-way upper bound for

an increase of r. The gain of adapting the node powers can be

seen on the gap between Opt(w1) and HybridRateMax.

Figure 5 shows the sum rates for an asymmetry between

SNR1 and SNR2 for a fixed asymmetric rate constraint r = 2.5.

Opt(w1) performs close to HybridRateMax in the range where

only small node power adaptation is required due to the channel

asymmetry. HybridRateMaxDecoupled performs well in the

region where the SNR imbalance supports the asymmetric rate

constraint (SNR1 > 15dB > SNR2) and performs worse in the

region where it counteracts r, because w1 is optimized first.

The HybridRateMax algorithm gets closer to the two-way upper

bound if the asymmetry between the channels increases, which

has the same reasons as explained above. The performance

of the proposed transceive filter design improves if one rate

becomes more and more the limiting rate. In this case, the

combination of node power optimization with the proposed

transceive filter design performs close to the two-way upper

bound and HybridRateMax performs pure two-way relaying.

V. CONCLUSIONS

The optimization problem of maximizing the overall sum rate

for a multi-antenna non-regenerative relaying scenario consider-

ing an asymmetric rate constraint is formulated. A hybrid one-

way / two-way relaying scheme is introduced to ensure that

the asymmetric rate constraint can always be fulfilled. Low-

complexity transceive filter and power optimization approaches

are derived which can be applied in scenarios where the number

of antenna elements at the relay equals at least the number of

antenna elements at each node. Simulation results for different

link qualities and rate constraints show that the proposed low-

complexity transceive filter and power optimization achieves

sum rates close to the two-way upper bound in case of high

asymmetric rate constraints or highly asymmetric channels.
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M = 4, L = 6, r = 2.5.
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