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Abstract—The Global Positioning System (GPS) has become
one of the state-of-the-art location systems that offers reliable
mobile terminal (MT) location estimates. However, there exist
situations where GPS is not available, e.g., when the MT is used
indoors or when the MT is located close to high buildings. In these
scenarios, a promising approach is to combine the GPS measured
values with measured values from the Global System for Mobile
Communication (GSM), which is known as hybrid localization
method. In this paper, a hybrid MT tracking algorithm based
on a Rao-Blackwellized Unscented Kalman filter (RBUKF) is
proposed that combines pseudoranges from GPS with timing
advance and received signal strengths from GSM. Simulation
results show that the proposed hybrid method outperforms the
GSM method. Furthermore, the performance of the RBUKF is
compared to the extended Kalman filter and the corresponding
posterior Cramér-Rao lower bounds.

I. INTRODUCTION

Wireless location systems offering reliable mobile terminal

(MT) location estimates have become an important field for

researchers and engineers over the past few years. The applica-

tions arise from emergency services and commercial services,

such as intelligent transport systems, location sensitive billing

and others, that rely on accurate MT estimates [1].

Several localization methods have been proposed to solve

the problem of locating a MT [2]. The Global Positioning

System (GPS) has become one of the state-of-the-art location

system that offers precise MT location estimates [3]. In GPS,

the MT location is determined from the propagation time

of the satellite signals, which is known as time of arrival

(ToA) method. If the MT receives satellite signals from at

least four different satellites, a three-dimensional (3-D) MT

location estimate can be found, where the fourth satellite signal

is needed to resolve the unknown bias between the MT and

satellite clock [3]. Similarly, a 2-D MT location estimate is

obtained from signals of at least three different satellites.

However, there exist situations where GPS is not available,

e.g., when the MT is located inside a building or is surrounded

by high buildings. In these scenarios, the number of satellites

in view is often not sufficient to obtain a 3-D or even 2-D MT

location estimate.

In the Global System for Mobile Communication (GSM), mea-

surements such as the received signal strength (RSS), timing

advance (TA), angle of arrival (AoA) or enhanced observed

time difference (E-OTD) exist that give information on the

MT location. Although these measurements cannot provide

the same accuracy as GPS measurements, GSM measurements

have the advantage that they are almost everywhere available.

The fusion of measured values of GPS and GSM is, thus, a

promising approach in order to obtain MT location estimates

even if less than four or three satellites are in view [4]–[9].

In [4] and [5], a hybrid localization method combining pseudo-

range (PR) measured values from GPS and E-OTD measured

values from GSM is investigated. In [6], a hybrid method is

presented that is based on the fusion of PR measured values

from GPS and round trip delay measured values from a cellular

radio network that is synchronized to GPS time. However,

[4]–[6], only provide general descriptions of their hybrid

methods and no algorithms or theoretical performance bounds

are given. In [7], a hybrid method based on the combination of

PR measured values from GPS and time difference of arrival

measured values from a cellular radio network using a least

squares approach is introduced. In [9], we have developed an

extended Kalman filter (EKF)-based MT tracking algorithm

that is based on the fusion of TA and RSS measured values

from GSM and PR measured values from GPS.

This paper is focussed on the combination of RSS, TA and PR

measured values from GSM and GPS, as they can be easily

obtained from off-the-shelf mobile handsets and conventional

GPS receivers. In contrast to [9], a Rao-Blackwellized Un-

scented Kalman filter (RBUKF) instead of an EKF is used

for the hybrid localization problem, in order to overcome

the shortcomings of the EKF [10], [11]. The achievable

performance of the RBUKF is then compared to the EKF and

the posterior Cramér-Rao lower bound (PCRLB) by means of

simulations. The PCRLB gives the theoretical best achievable

performance of nonlinear filters [12] and serves here as an

important tool for the design of a hybrid MT tracking system.

The rest of this paper is organized as follows: The statistical

models for the RSS, TA and PR measured values are reviewed

in Section II. The proposed RBUKF-based hybrid localization

method and the corresponding PCRLBs are determined in Sec-

tion III. The performance of the RBUKF based on simulations

is evaluated in Section IV. Finally, conclusions are drawn in

Section V.

II. STATISTICAL MODELS OF MEASURED VALUES

A. Introduction

The statistical models for the measured values available

from GPS and GSM are reviewed in the following [9]. The

MT location xms =[xms , yms ]
T to be estimated and the known

base station (BS) locations x
(n)
bs =[x

(n)
bs , y

(n)
bs ]T, n = 1, ..., Nbs



are assumed to lie in the xy-plane, where [·]T denotes the

transpose of a vector or matrix. The known satellite locations

are given by x
(l)
sat = [x

(l)
sat , y

(l)
sat , z

(l)
sat ]

T, l = 1, ..., Nsat. The

statistical models for 3-D BS and MT locations can be

obtained in a similar way.

B. Received Signal Strength

In GSM, the RSS value is an averaged value of the strength

of a radio signal received by the MT. The attenuation of the

signal strength through a mobile radio channel is caused by

three factors, namely fast fading, slow fading and path loss.

As the RSS measured values are averaged over several time-

consecutive measurements, the error due to fast fading can be

neglected. The path loss L
(n)(xms(k)) , L̃

(n) in dB at time

index k is given by the well known formula

L̃
(n) = A(n) + 10 · B(n) · log10

(

d
(n)
bs (xms(k))/km

)

(1)

[2], where d
(n)
bs (xms(k)) denotes the Euclidean distance be-

tween the MT and the n-th BS and A(n), B(n) are model

parameters that can be determined empirically or from well

known path loss models as, e.g., COST 231 Walfisch-Ikegami

[13].

As done in [8], it is assumed that antenna gain models

are a-priori available. Let ϕ
(n)
bs (xms(k)) , ϕ̃(n) denote the

azimuth angle between the MT and the n-th BS antenna,

counted counterclockwise from the boresight direction of the

BS antenna. Let further A
(n)
m and ϕ

(n)
3dB denote the minimum

gain and 3 dB beamwidth of the BS antenna. Then, a model

for the normalized antenna gain in dB scale is given by

g(ϕ̃(n))=−min

{

12
(

ϕ̃(n)/ϕ
(n)
3dB

)2

, A(n)
m

}

(2)

[8], where min{a, b} denotes the smallest value of the set

{a, b}. Let yrss(k) denote the vector of Nbs RSS measured

values. Then, the statistical model of the RSS measured values

in dB scale is given by

yrss(k) = hrss(xms(k)) + vrss(k), (3)

with hrss(xms(k)) = [h
(1)
rss(xms(k)), · · · , h

(Nbs)
rss (xms(k))]T,

where h
(n)
rss (xms(k)) = P

(n)
t − {L̃(n) − g(ϕ̃(n))} and P

(n)
t

denotes the n-th BS’s equivalent isotropic radiated power. The

random variable vrss(k) describes the error in dB due to slow

fading which is assumed to be zero-mean Gaussian distributed

with covariance matrix Rrss = diag((σ
(1)
rss)2, · · · , (σ

(Nbs)
rss )2).

C. Timing Advance

In GSM, the TA is a parameter that is used to maintain

frame alignment in the GSM system [1]. Basically, the TA is

the round trip propagation delay, i.e., the time the radio signal

needs to travel from the BS to the MT and back, quantized

to finite precision. Let yta(k) denote the vector of Nbs TA

measured values multiplied by c0/2, where c0 is the speed of

light. Then, the statistical model for the TA measured values

is given by

yta(k) = hta(xms(k)) + vta(k), (4)

where hta(xms(k)) = [d
(1)
bs (xms(k)), · · · , d

(Nbs)
bs (xms(k))]T.

The random variable vta(k) accounts for the errors each

TA measured value is affected by, which is assumed to

be zero-mean Gaussian distributed with covariance matrix

Rta = diag((σ
(1)
ta )2, · · · , (σ

(Nbs)
ta )2).

D. Pseudorange

The GPS is based on the ToA principle, i.e., the MT is

measuring the time the satellite signal requires to travel from

the satellite to the MT [3]. The MT’s clock is generally not

time-synchronized to the clocks of the GPS satellites, resulting

in an unknown receiver clock bias δt(k). The satellite clocks,

however, can be assumed to be mutually synchronized, so that

for each time index k the ToA measured values are affected

by the same bias [3]. Let ypr (k) denote the vector of Nsat

PR measured values obtained from multiplying the biased ToA

measured values by c0. Then, the statistical model of the PR

measured values can be written as

ypr (k) = hpr (xms(k), δt(k)) + vpr (k), (5)

with hpr (xms(k), δt(k)) = [h̃
(1)
pr , · · · , h̃

(Nsat )
pr ]T, where h̃

(l)
pr =

d
(l)
sat(xms(k))+ c0 · δt(k) and d

(l)
sat(xms(k)) denotes the Eu-

clidean distance between the MT and the l-th satellite. The

random variable vpr (k) describes the errors each PR mea-

sured value is affected by, which is assumed to be zero-

mean Gaussian distributed with covariance matrix Rpr =

diag((σ
(1)
pr )2, · · · , (σ

(Nsat )
pr )2).

III. RAO-BLACKWELLIZED UNSCENTED KALMAN FILTER

AND POSTERIOR CRAMÉR-RAO LOWER BOUND FOR

HYBRID LOCALIZATION

A. Introduction

After having described the nonlinear relationship between

the RSS, TA, PR measured values and the MT location, the

question is how one can efficiently estimate the MT location

from these measured values. The EKF provides a solution

to this problem, as it addresses the problem of recursively

estimating the state of a discrete-time nonlinear dynamic

system

x(k + 1) = f(x(k),w(k)), (6)

y(k) = h(x(k),v(k)), (7)

where x(k) and y(k) are the state and measurement vectors,

w(k) and v(k) are process and measurement noise vectors

and f(·) and h(·) are some vector valued mapping functions

[14]. The EKF, however, is based on a first-order linearization

of the nonlinear dynamic system. These approximations can

lead to suboptimal performance or even divergence of the

EKF. Additionally, due to the linearization of the system

equations, Jacobian matrices have to be evaluated, which in

some cases may become difficult. E.g., consider the case

when antenna gain models, cf. (2), are available only from

measurements and, consequently, no closed form expressions

for these models exist. In these cases, it is much easier to
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approximate the models using interpolation than trying to eval-

uate the corresponding Jacobian matrices. Thus, in this paper,

an unscented Kalman filter (UKF) is proposed for the hybrid

localization problem [10]. The UKF is based on a deterministic

sampling approach where no explicit calculation of Jacobian

matrices is necessary and the computational complexity is the

same order as that of the EKF. In this approach, a set of

carefully chosen sample points (sigma points) is propagated

through the true nonlinear system. The nonlinear transformed

samples capture the posterior mean and covariance accurately

to at least the second-order of the Taylor series expansion,

whereas the EKF only achieves first-order accuracy [10].

B. Process and Measurement Model

For the UKF-based hybrid localization method, the states

of the process model include the MT location, velocity, clock

bias and drift, i.e., x = [xms , ẋms , yms , ẏms , c0 ·δt, c0 ·δṫ]
T.

The MT’s motion is approximated with a constant velocity

(CV) model [14] and the receiver clock bias is modeled by a

second-order Markov process whose input is white noise [14],

[15]. The corresponding linear process model for the hybrid

localization method is, thus, given by

x(k + 1) = Φ · x(k) + Γ · w(k), (8)

with Φ = I3 ⊗

[

1 Ts

0 1

]

,Γ = diag(I2 ⊗ γ, I2 · c0),where

Iq is the identity matrix of size q, ⊗ denotes the Kronecker

product, γ = [T 2
s /2, Ts]

T and Ts is the sampling time. The

process noise w(k) = [wax
(k), way

(k), wδt(k), wδṫ(k)]T is

assumed to be a zero-mean white Gaussian noise sequence

with block diagonal covariance matrix Q = diag(Qcv ,Qδt),
with Qcv = diag(σ2

ax
, σ2

ay
), where σ2

ax
and σ2

ay
denote the

noise variances in the x- and y-direction. The elements of the

symmetric 2 × 2 matrix Qδt are given by Q11 = h0Ts/2 +
2h−1T

2
s + 2/3π2h−2T

3
s , Q12 = 2h−1Ts + π2h−2T

3
s and

Q22 = h0/(2Ts)+2h−1+8/3π2h−2Ts, where the parameters

h0 = 9.4 · 10−20, h−1 = 1.8 · 10−19 and h−2 = 3.8 · 10−21

correspond to values of a typical quartz standard [15].

In the following, the unknown state vector x(k) is estimated

from the PR, TA and RSS measured values. These measured

values can be combined into a single measurement vector

y(k) =
[

yT

pr (k),yT

ta(k),yT

rss(k)
]T

, so that the correspond-

ing nonlinear measurement model for the hybrid localization

method can be written as

y(k) = h(x(k)) + v(k), (9)

where h(x(k)) =
[

hT

pr (x(k)),hT

ta(x(k)),hT

rss(x(k))
]T

and

v(k) =
[

vT

pr (k),vT

ta(k),vT

rss(k)
]T

. The random variable

v(k) is zero-mean Gaussian distributed with block diagonal

covariance matrix R = diag(Rpr ,Rta ,Rrss).

C. Rao-Blackwellized Unscented Kalman Filter

Due to the fact that the process model is linear, the mea-

surement model is nonlinear and the process and measurement

noise is additive Gaussian, cf. (8) and (9), a Rao-Blackwellized

version of the UKF (RBUKF) instead of an UKF can be used.

The idea of the Rao-Blackwellization is that one can concep-

tually use the Kalman filter for the linear part (time update)

and the UKF for the nonlinear part (measurement update). As

a result, the quasi Monte Carlo variance and computational

complexity is reduced [11]. The RBUKF equations, adopted

to the proposed hybrid localization method, are summarized

in Table I.

TABLE I: Rao-Blackwellized Unscented Kalman Filter

1. Initialization

x̂(0|0) = E{x(0)}

P(0|0) = E{(x(0) − x̂(0|0))(x(0) − x̂(0|0))T}

2. For k = 1, 2, ...
(a) Time Update Equations

x̂(k|k − 1) = Φx̂(k − 1|k − 1)

P(k|k − 1) = ΦP(k − 1|k − 1)ΦT + ΓQΓT

Calculate matrix X with 2L + 1 sigma vectors:

X(k|k − 1) =

[

x̂(k|k − 1) x̂(k|k − 1) ±
√

(L + λ)P(k|k − 1)

]

Y(k|k − 1) = h(X(k|k − 1))

ŷ(k|k − 1) =
2L
∑

i=0

W
(m)
i

Yi(k|k − 1)

(b) Measurement Update Equations

Ỹi = Yi(k|k − 1)−ŷ(k|k − 1), X̃i = Xi(k|k − 1)−x̂(k|k − 1)

Pỹkỹk
=

2L
∑

i=0

W
(c)
i

Ỹi Ỹ
T

i
+ R, Pxkyk

=
2L
∑

i=0

W
(c)
i

X̃i Ỹ
T

i

K = Pxkyk
P−1

ỹkỹk

x̂(k|k) = x̂(k|k − 1) + K [y(k) − ŷ(k|k − 1)]

P(k|k) = P(k|k − 1) − KPỹkỹk
KT

where L= dimension of state vector, λ= composite scaling parameter,

Xi, Yi = i-th column of the matrices X and Y, and W
(m)
i

, W
(c)
i

=
weights calculated according to [10].

D. Posterior Cramér-Rao Lower Bound

After having introduced the RBUKF for the hybrid local-

ization method, its performance should be compared to a

theoretical performance bound. In the following, the PCRLB

is determined that gives the best achievable performance for

nonlinear filtering [12]. Let x̂(k|k) be an unbiased estimate

of the state vector x(k). Then, the covariance matrix of the

estimation error satisfies the inequality

E{(x̂(k|k) − x(k))(x̂(k|k) − x(k))T} ≥ J(k)−1, (10)

where E{·} is the expectation, J(k) denotes the filtering

information matrix and its inverse is the PCRLB matrix. The

matrix inequality A ≥ B should be interpreted as the matrix

A−B being positive semidefinite. The aim is now to calculate

J(k). In [16], an elegant method is presented, where J(k)
can be determined recursively. This recursion, adapted to the

hybrid localization problem involving additive Gaussian noise,

cf. (8) and (9), can be written as

J(k+1) = (ΓQΓT+ΦJ(k)−1ΦT)−1+E{H̃TR−1H̃}, (11)
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where H̃
∆
= H(k + 1) denotes the Jacobian matrix of the

nonlinear measurement function h(·), cf. (9), evaluated at the

true value of the state x(k + 1).

IV. SIMULATION RESULTS

It is assumed that a car is equipped with a MT that is capable

of providing TA and RSS measured values from GSM and PR

measured values from GPS. The car travels with a constant

speed of 45 km/h on a straight line in a dense urban scenario of

size 3 km×3 km as it is shown in Fig. 1. The GSM network is

composed of Nbs = 7 BSs equipped with directional antennas.

The BS locations as well as the BS antenna parameters are a-

priori known. The satellite locations are assumed to be known

and are chosen from the real GPS satellite constellation taking

into account realistic satellite elevation masks. The simulation

parameters are given in Table II and are assumed to be equal

for all BSs and all satellites for the sake of simplicity. The

following combinations of measured values are investigated:

• GSM method: One TA measured value from the serving

BS and a total of seven RSS measured values from

serving and neighbouring BS antennas,

• Hybrid 1 method: Measured values of GSM method and,

in addition, one PR measured value from one satellite,

• Hybrid 2 method: Measured values of GSM method and,

in addition, two PR measured values from two different

satellites.

For simplicity, the serving BS is assumed to be the BS located

at [750 m,1000 m]T. The PR, TA and RSS measured values

are updated every Ts = 0.48 s, which corresponds to the

reporting period of measured values in GSM networks. The

performance of the proposed RBUKF-based hybrid localiza-

tion method is evaluated in terms of the root mean square

error (RMSE) determined from Nmc = 500 Monte Carlo

trials [12]. For each trial, the MT trajectory is initialized

with x(0) = [−200 m, 8.84 m/s,−200 m, 8.84 m/s, 0m, 0m]T.

The trajectory then is generated by (8), where the el-

ements of the process noise covariance sub-matrix Qcv

are chosen to have very small values, cf. Table II. The

initial state vector x̂(0|0) for the RBUKF is obtained

from random initialization [14], and the error covariance

−1000 −500 0 500 1000 1500 2000
−1000

−500

0

500

1000

1500

2000

x in m

y
in

m

START

END

Fig. 1: Simulation scenario with NBS = 7 BSs (•). The arrows (→)
indicate the BS antenna boresight direction.

matrix is set to P(0|0) = diag( (200m)2, (10m/s)2,
(200m)2, (10m/s)2, (300 km)2/3, (10m)2/3). In order to

account for possible MT maneuvers and receiver clock un-

certainties, the covariance matrix Q for the filter is chosen to

be Q = diag(100 ·Qcv , 5 ·Qδt). The measurement covariance

matrix R for the simulations and the filter are assumed to be

the same.

TABLE II: Simulation parameters

Parameter Value Parameter Value

A in dB 132.8 Pt in dBm 50

B in dB 3.8 σax in m/s2 10−2

σrss in dB 8 σay in m/s2 10−2

Am in dB 20 σta in m 300

ϕ3dB in ◦ 60 σpr in m 15

In Fig. 2, the RMSE in dependence of the time index k
for the GSM, Hybrid 1 and Hybrid 2 method for the MT

location, velocity, clock bias and drift are compared to the

corresponding PCRLBs. From Fig. 2, it can be seen that the

GSM method yields the worst results in terms of RMSE which

can be explained by the fact that the RSS and TA measured

values do not provide the same level of accuracy than the bias

corrected GPS measured values. The RMSE can be improved

by the Hybrid 1 and Hybrid 2 methods that additionally take

into account one or two PR measured values from GPS. The

improvement of the MT location RMSE, however, is marginal

for the Hybrid 1 method which can be explained by the fact

that the RBUKF is not able to accurately estimate the unknown

receiver clock bias, cf. 2(c).

For the Hybrid 2 method, the improvements are significant.

Due to the fact that two PR measured values are available,

the RBUKF can much more accurately estimate the receiver

clock bias and drift states, cf. 2(c) and (d), which has a direct

impact on the achievable MT location RMSE. For the RMSE

of the MT velocity, cf. 2(b), similar conclusions can be drawn.

Again, the poor performance of the GSM method can be

further improved by the Hybrid 1 and Hybrid 2 methods. In

Table III, the performance of the RBUKF is compared to the

EKF [9] in terms of the RMSE averaged over the whole time

period. From Table III, it can be seen that for this specific

scenario the RBUKF slightly outperforms the EKF in terms

of average RMSE.

TABLE III: Average RMSE performance of RBUKF and EKF

Algorithm Method Location Velocity Bias Drift

GSM 74.5 m 3.7 m/s - -

RBUKF Hybrid 1 71.9 m 3.4 m/s 33.6 m 1.9 m/s

Hybrid 2 44.4 m 2.7 m/s 4.6 m 1.2 m/s

GSM 74.8 m 3.7 m/s - -

EKF [9] Hybrid 1 73.5 m 3.5 m/s 34.2 m 1.9 m/s

Hybrid 2 45.3 m 2.8 m/s 4.6 m 1.2 m/s

C. Fritsche, and A. Klein, ”On the Performance of Hybrid GPS/GSM Mobile Terminal Tracking,” in Proc. of the International Conference of
Communications (ICC), International Workshop on Synergies in Communications and Localization (SyCoLo), Dresden, Germany, June 2009.



0 50 100 150 200 250 300 350 400
0

50

100

150

 

 

RBUKF GSM

RBUKF Hybrid 1

RBUKF Hybrid 2

PCRLB GSM

PCRLB Hybrid 1

PCRLB Hybrid 2

R
M

S
E

o
f

M
T

lo
ca

ti
o

n
in

m

time index k

(a)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

 

 

RBUKF GSM

RBUKF Hybrid 1

RBUKF Hybrid 2

PCRLB GSM

PCRLB Hybrid 1

PCRLB Hybrid 2

R
M

S
E

o
f

M
T

v
el

o
ci

ty
in

m
/s

time index k

(b)

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50

 

 

RBUKF Hybrid 1

RBUKF Hybrid 2

PCRLB Hybrid 1

PCRLB Hybrid 2

R
M

S
E

o
f

M
T

cl
o

ck
b

ia
s

in
m

time index k

(c)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

RBUKF Hybrid 1

RBUKF Hybrid 2

PCRLB Hybrid 1

PCRLB Hybrid 2

R
M

S
E

o
f

M
T

cl
o

ck
d

ri
ft

in
m

/s

time index k

(d)
Fig. 2: RMSE of the RBUKF and corresponding PCRLB for the
GSM, Hybrid 1 and Hybrid 2 method for MT (a) location, (b)
velocity, (c) clock bias and (d) clock drift.

V. CONCLUSION

In this paper, an RBUKF-based hybrid localization method

is presented that combines RSS and TA measured values from

GSM and PR measured values from GPS in order to track a

MT. The performance of the RBUKF is evaluated in terms of

the RMSE which is then compared to the PCRLB and the EKF.

Simulations results have shown that compared to combining

only measured values from GSM, the RMSE of the RBUKF

and the corresponding PCRLBs can be improved by addition-

ally taking into account measured values from GPS. In the

future, it should be investigated how additional measurements,

e.g., E-OTD measured values or road-information, can further

improve the performance of the hybrid localization method.
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