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ABSTRACT

An extended Kalman filter-based interacting multiple model

algorithm (IMM-EKF) is proposed for mobile terminal track-

ing in cellular networks based on time of arrival estimates.

The proposed IMM-EKF is able to cope with line-of-sight

(LOS) and non-line-of-sight (NLOS) conditions modeled by a

Markov chain, where the LOS and NLOS errors are described

by different noise models. Road-constraints are included into

the IMM-EKF to improve performance. Simulation results

show that the IMM-EKF outperforms conventional methods.

A comparison to the posterior Cramér-Rao lower bound is

given to demonstrate the effectiveness of the IMM-EKF.

Index Terms— Interacting multiple model, extended

Kalman filter, NLOS mitigation, robust tracking, positioning.

1. INTRODUCTION

Network-based wireless location systems have become an

important field for researchers and engineers in recent years.

Applications arise in emergency services, fleet management,

intelligent transportation systems and others where different

positioning techniques can be adopted [1, 2].

Here, we consider tracking a mobile terminal (MT) where

the positions of the base stations (BSs) are known and Time-

of-Arrival (ToA) estimates between BS and MT are used to

calculate the ranges and positions of the MT. The Federal

Communications Commission (FCC) standard requires cel-

lular network providers to achieve a certain position accuracy

for mobile centric solutions [1] which can be achieved if

a line-of-sight (LOS) channel between the MT and the BS

is available. However, in urban areas, multiple reflections at

buildings and other obstacles prevent the signal to arrive at the

MT via the direct path which leads to biased ToA estimates.

This bias in time due to non-line-of-sight (NLOS) propa-

gation can severely effect the position estimates of tracking

algorithms such as Kalman filters (KF). Thus, methods to

cope with NLOS impairments are needed [3, 4].

In order to model NLOS and LOS, we distinguish between a

noise model for LOS channels and a noise model with a pos-

itive bias for NLOS channels. One way to deal with different

measurement noise models is to use the interacting multiple

model (IMM) algorithm that is a powerful tool for target

tracking in the context of different noise or motion models

with a reasonable cost of computational complexity [5]. The

IMM is a hybrid filter that distinguishes among a fixed num-

ber of discrete modes. In each mode, the continuous state

vector is estimated and combined with the estimated state

vectors of the other modes yielding the final state estimate.

In [6], the IMM has been applied in the context of NLOS

mitigation where one IMM with two KF at each BS is used to

distinguish between the two noise models. The KF estimate

in the NLOS mode, where the bias of the ToA estimates is

subtracted, is combined with the KF estimate in LOS mode in

order to determine the ranges between the MT and the BSs,

irrespective which BS is in LOS or NLOS mode. The final

position is obtained from the smoothed range estimates by

using a geometric method [6].

However, one can do better if the position of the MT is es-

timated directly with one IMM using a bank of extended

Kalman filters (EKFs) that deal with the non-linear relation-

ship between the measured ranges and the positions. This ap-

proach, that outperforms the algorithm in [6] but suffers from

higher computational complexity, is followed here, where the

LOS/NLOS occurrences are modeled as a two-state Markov

chain. We assume a fixed number of N BSs where each

BS can either be in LOS or NLOS mode. Hence, we obtain

2N possible modes which makes our method predestined for

small numbers of BSs to keep complexity low. The EKFs

used in each mode substract the bias from the ToA estimates

and calculate the state vector, consisting of position and ve-

locity. This estimate is weighted with the probabilities of

each mode to yield the final state estimate. Road constraints

[7] are incorporated in the proposed IMM-EKF to improve

performance.

2. PROBLEM STATEMENT

We assume that the states to be estimated are the two-

dimensional position and velocity of the MT, i.e., x =
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[xMS , ẋMS , yMS , ẏMS ]T. The evolution of the state vector
is assumed to follow a nearly constant velocity (CV) model

x(k + 1)=Fx(k) + Γv(k) [1], where

F = I2 ⊗

[

1 Ts

0 1

]

, Γ = I2 ⊗

[

T 2
s /2
Ts

]

, (1)

I2 is the identity matrix of size 2,⊗ is the Kronecker product,
Ts is the sampling time, v(k) = [vx, vy]T is process driving
noise with covariance matrix Q(k) = diag(σ2

ax
, σ2

ay
), where

σ2
ax
and σ2

ay
are the noise variances in x- and y-direction, re-

spectively. Let z(k) denote the vector of ToA estimates mul-
tiplied by the speed of light. Then, the measurement equation

is [1]

z(k) = h(x(k)) + w(k), (2)

where h(x(k))= [h1(x(k)), · · · , hN (x(k))]T, and hn(x(k))
is the Euclidean distance between the MS and the n-th BS
at time k. The random variable (rv) w(k) describes mea-
surement noise which can either be a zero-mean Gaussian rv

modeling sensor noise in case of a LOS channel or a posi-

tive mean-shift Gaussian rv describing sensor noise and the

bias which occurs due to NLOS propagation. Since we do not

know when NLOS propagation occurs, subtracting the bias

becomes intractable and using the EKF on the contaminated

measurements leads to high position errors.

3. ROBUST IMM-EKF

3.1. Mode-dependent measurement noise

In order to cope with the changing LOS/NLOS conditions

at the BSs, we introduce a mode-dependent measurement

noise vector w(k,M(k)), where M(k) denotes a discrete
mode variable in effect at time k that models whether the
BSs are in a LOS or NLOS condition. If N BSs are

available, we have r = 2N possible modes. The mode

M(k) at time k is assumed to be among the r possible
modes M(k) ∈ {Mj}r

j=1. For example, if N = 3, we
obtain M1 = 1, ...,M8 = 8, and the corresponding events
{LOS, LOS, LOS}, ..., {NLOS, NLOS, NLOS}. The mode-
dependent measurement noise vector is assumed to be Gaus-

sian distributed with multivariate probability density func-

tion (pdf) p(w(k,M(k))) =N (w(k);bj(k),Rj(k)), where
bj(k) and Rj(k) denote the mean vector and covariance
matrix of the Gaussian pdf for mode Mj . It is assumed

that the mode dependent covariance matrix is given by

Rj(k) = diag(σ2
1 , · · · , σ2

N ), where each element σ2
n can

be defined as

σ2
n =

{

σ2
LOS

if n-th BS is in LOS
σ2
LOS

+ σ2
NLOS

if n-th BS is in NLOS,
(3)

where σ2
LOS

and σ2
NLOS

denote the variances of the noise

in LOS and NLOS situations, respectively. Equivalently, the

bias vector is given by bj(k) = [b1, · · · , bN ]T, where each
element bn can be defined as

bn =

{

0 if n-th BS is in LOS
mNLOS if n-th BS is in NLOS,

(4)

where mNLOS denotes a positive NLOS range offset. In

order to account for the unknown transitions between LOS

and NLOS conditions at each BS, the discrete mode variable

M(k) is modeled by a time-homogeneous 2N -state first-order

Markov chain with transition matrix Π and corresponding

transition probabilities

πij = P{M(k) = Mj |M(k − 1) = Mi} (i, j ∈ S), (5)

where S={1, ..., 2N}. Π is obtained, assuming that the two-
state Markov chains with transition matricesΠn modeling the

LOS/NLOS transition at each BS are independent. Thus, we

have

Π = Π1 ⊗ Π2 ⊗ · · · ⊗ ΠN . (6)

As in [6], we assume σ2
LOS
, σ2

NLOS
andmNLOS to be known.

If we knewM(k), we could substract the corresponding bias
from the measurements and use an EKF for estimating the

x(k). In practice, however,M(k) is not known and has to be
estimated together with x(k) using a hybrid estimator.

3.2. MT Tracking Algorithm

The MT tracking problem is solved using an IMM estimator,

which is a suitable tool for hybrid estimation and excellently

trades off performance versus computational complexity [5].

In Fig. 1 and Table 1, a single cycle of the IMM algorithm

is shown. In each cycle, the IMM algorithm consists of three

major steps: interaction, filtering and combination.
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Fig. 1: One cycle of the IMM algorithm

Step 1: Interaction. In order to obtain the initial conditions

x̂0j(k−1|k−1) andP0j(k−1|k−1) for the mode-matched
filters, the state vectors x̂i(k−1|k−1) and covariance matri-
cesPi(k−1|k−1) of all mode-matched filters of the previous
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time step are weighted with their corresponding mixing prob-

abilities µi|j(k − 1|k − 1).
Step 2: Mode-matched filtering. For each possible modeMj

a filtering step is performed in parallel. Due to the nonlin-

ear relationship between the measurements and the state, cf.

(2), EKFs are used here. Note that the mode-matched EKFs

only differ in the evaluation of the residual error vector ej(k),
cf. (7) in Table 1, where the mode-dependent bias bj(k) is
subtracted, and the residual covariance matrix Sj(k), cf. (8),
where the mode-dependent measurement covariance matrix

Rj(k) is incorporated. In addition, each mode-matched EKF
computes the likelihood Λj(k), which indicates the probabil-
ity of being in the modeMj at the current time step.

Step 3: Combination. The state and covariance estimates

x̂j(k|k) and Pj(k|k) at the output of the mode-matched fil-
ters are weighted with their corresponding mode probabili-

ties µj(k), yielding the final state and covariance estimates
x̂(k|k) and P(k|k).

3.3. Incorporation of road constraints

In many situations, additional information such as road maps

are available. This a-priori knowledge can be used to restrict

the movement of the MT to roads. Since each EKF of the

proposed IMM algorithm estimates the state vector containt-

ing the MT xMS - and yMS -position, road-constraints on the

MT position can be easily incorporated into the EKF, e.g., as

additional pseudomeasurements [7].

4. SIMULATION RESULTS

In the following, it is assumed that N = 3 BSs are available
with positions at (-3 km,-2 km), (3 km, 5 km), (6 km, 2 km).
The MT is moving with a constant velocity of v=70 km/h on
a straight line, starting at (0 km, 0 km) and ending at approxi-
mately (2.75 km, 2.75 km). The sample length is 1000 and the
sampling time is Ts = 0.2 s. The LOS and NLOS ToA mea-
surements are generated according to (2) with σLOS =150m,
σNLOS = 409m and mNLOS = 513m [6]. The LOS/NLOS
transitions at each BS are modeled by a Markov chain with

transition matrixΠ1 =Π2 =Π3 =I2·0.995+(12− I2)·0.005,
where 12 denotes a matrix of size 2 whose entries are all 1.
In the following, the performance of five different estima-

tors are compared: the standard EKF and road-constrained

EKF (C-EKF) assuming LOS [7], the IMM-KF suggested

in [6] and the proposed IMM-EKF without and with road-

constraints (IMM-C-EKF). All filters are initialized with the

same state vector and covariance matrix. The initial MT po-

sition is obtained from the three ToA estimates at time k = 0
using a least-squares approach [2]. The initial MT velocities

are set to zero. The initial state covariance matrix is set to

P(0)=diag((600m)2, (600m)2, (30m/s)2, (30m/s)2) and the
variance of the driving noise is assumed to be σax

= σay
=

1m/s2. For the IMM-based estimators the transition matrix,

1. Mixing Probability Calculation (i, j = 1, ..., 2N )

µi|j(k − 1|k − 1) = (1/c̄j)πijµi(k − 1)

c̄j =
X

i

πijµi(k − 1)

2. Interaction (j = 1, ..., 2N )

x̂0j(k − 1|k − 1) =
X

i

x̂i(k − 1|k − 1)µi|j(k − 1|k − 1)

x̃ij(k − 1|k − 1) = x̂i(k − 1|k − 1) − x̂0j(k − 1|k − 1)

P0j(k − 1|k − 1) =
X

i

µi|j(k − 1|k − 1) {Pi(k − 1|k − 1)

+x̃ij(k − 1|k − 1) · x̃T

ij(k − 1|k − 1)}

3. Mode-matched Extended Kalman Filtering (j = 1, ..., 2N )

x̂j(k|k − 1) = Fx̂0j(k − 1|k − 1)

Pj(k|k − 1) = FP0j(k − 1|k − 1)FT + ΓQ(k)ΓT

Hj(k) =
∂h(x(k))

∂x(k)

˛

˛

˛

˛

x̂j(k|k−1)

ej(k) = z(k) − bj(k) − h(x̂j(k|k − 1)) (7)

Sj(k) = Hj(k)Pj(k|k − 1)HT

j (k) + Rj(k) (8)

Kj(k) = Pj(k|k − 1)HT

j (k)S−1
j (k)

x̂j(k|k) = x̂j(k|k − 1) + Kj(k)ej(k)

Pj(k|k) = [I4 − Kj(k)Hj(k)]Pj(k|k − 1)

Λj(k) = N (ej(k);0,Sj(k))

4. Mode Probability Update (j = 1, ..., 2N )

µj(k) = (1/c)Λj(k)c̄j , c =
X

j

Λj(k)c̄j

5. Combination

x̂(k|k) =
X

j

x̂j(k|k)µj(k), x̃j(k|k) = x̂j(k|k) − x̂(k|k)

P(k|k) =
X

j

µj(k) ·
n

Pj(k|k) + x̃j(k|k) · x̃T

j (k|k)
o

Table 1: IMM-EKF algorithm

cf. (6), of the Markov chain is assumed to be known. The ini-

tial mode probabilities are set to µi(0) = 1/8 for i = 1, ..., 8.
In Fig. 2, the cumulative distribution function (CDF) ver-

sus the localization error for 100 Monte Carlo runs is shown,

where approximately 50% of the ToA estimates are contam-
inated by NLOS occurrences. For calculating the error CDF,

the first 100 state estimates of each Monte Carlo run are ne-

glected, as done in [6]. From Fig. 2, it can be observed that

the EKF and C-EKF break down in such an environment.

A significant performance improvement can be achieved by

the IMM-KF and the proposed IMM-EKF. The difference in

the performance between the IMM-KF and IMM-EKF comes

from the fact that in the IMM-KF approach, the IMM algo-

rithm is only applied to smooth the ToA estimates at each BS

separately. The proposed IMM-EKF approach, however, ex-

ploits more efficiently the MT position information available

from the ToA estimates, as it jointly smoothes the ToA esti-

mates from all BSs and estimates the MT state vector with

an EKF. Further performance improvements can be achieved

using an IMM-C-EKF. In Table 2, simulation results for dif-

ferent degrees of NLOS occurrences are shown. Here, only
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the percentiles (67%, 95%) of the localization error are pre-
sented and compared to the FCC target (50m for 67% and
150m for 95%). It can be observed that the proposed methods
outperform conventional methods, whereas only the IMM-C-

EKF achieves the FCC target even in environments that are

highly contaminated by NLOS occurrences. Note that similar

results have been obtained for other degrees of NLOS con-

taminations where the transition matrix, cf. (6) is not exactly

known. In Fig. 3, simulation results are shown for a sce-

nario with a predetermined mode sequence, where roughly

50% of the ToA estimates are contaminated by NLOS occur-
rences. For this scenario, with fixed LOS/NLOS transitions,

5000 Monte Carlo runs are performed and the position root-
mean square error (RMSE) is calculated and compared to the

posterior Cramér-Rao lower bound without road-constraints

(PCRLB) and with road constraints (C-PCRLB). The PCRLB

is calculated assuming zero process noise and a-priori known

mode sequence as done in [8] which is an optimistic bound,

because the mode history is not known in practice. Note that

the PCRLBs are only valid for unbiased estimators. Although

we have not proven that the above mentioned estimators are

unbiased, the PCRLB is still used as a tool for benchmark-

ing. Simulation results show that compared to the IMM-KF, a

significant gain in performance can be achieved by the IMM-

EKF. In particular, the IMM-EKF converges faster to the the-

oretical bound than the IMM-KF. Further improvement can be

obtained using the IMM-C-EKF. Even though not presented

here, simulation results have shown that the proposed meth-

ods are robust against imperfect knowledge of the NLOS bias

and variance.

NLOS contamination
Method

0% 50% 100%

EKF (30,58) (579,1170) (379,1320)

C-EKF [7] (14,28) (192,362) (165,218)

IMM-KF [6] (33,85) (53,150) (82,186)

IMM-EKF (30,58) (43,96) (74,156)

IMM-C-EKF (14,28) (18,38) (31,65)

Table 2: Results for different degrees of NLOS contamination.

Number in parentheses gives the error in m of the 67- and 95- per-

centile.

5. CONCLUSION

A robust tracking algorithm based on ToA estimates in a cel-

lular network is presented that copes with different measure-

ment noise models due to NLOS impairments. It outperforms

its competitors at the cost of additional computational effort.

Road constraints are incorporated to further improve position-

ing accuracy. The major drawback of the proposed method is

that it requires some knowledge of the noise statistic. Esti-

mation of the noise covariance is considered in future work.

Furthermore, different motion models may be incorporated in

the IMM algorithm.
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