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Abstract—In this paper we are concerned with nonlinear
systems subject to a conditionally linear, Gaussian sub-structure.
This structure is often exploited in high-dimensional state esti-
mation problems using the marginalized (aka Rao-Blackwellized)
particle filter. The main contribution in the present work is to
show how an efficient filter can be derived by exploiting this
structure within the auxiliary particle filter. Based on a multi-
sensor aircraft tracking example, the superior performance of the
proposed filter over conventional particle filtering approaches is
demonstrated.

I. INTRODUCTION

Consider the following rather general discrete-time state-

space model,

xk = fk−1(xk−1,wk−1), (1a)

zk = hk(xk, ek), (1b)

where k denotes the discrete-time index, xk ∈ R
nx denotes

the state vector, zk ∈ R
ny denotes the measurement vector,

fk−1 and hk denote possibly time-varying functions. Finally,

the process and measurement noise wk−1 and ek are assumed

to be mutually independent white noise sequences with known

probability density functions (pdf’s) pw(w) and pe(e). Here,
it is worth noting that the extension of (1) to the case of multi-

rate sensors is straightforward.

The aim in nonlinear filtering is to sequentially compute

estimates of the state xk using the sequence of all available

measurements Zk = {zi}
k

i=1 up to and including time k. From
a Bayesian perspective, the problem is to sequentially compute

the filtering pdf p(xk|Zk), which is given by

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (2a)

p(zk|Zk−1) =

∫

p(zk|xk)p(xk|Zk−1) dxk, (2b)

where p(xk|Zk−1) is provided by the following time update
stage:

p(xk|Zk−1) =

∫

p(xk|xk−1)p(xk−1|Zk−1) dxk−1. (2c)

The above recursions are initiated by p(x0|Z0) = p(x0) [1].
It is well known that the nonlinear recursive filtering problem

only allows analytical solutions in a few special cases, e.g, for

linear Gaussian models, where the Kalman filter provides the

optimal solution [2]. However, for the general model (1), an

analytical solution to the above recursions is intractable and,

thus, approximations are needed.

In recent years, sequential Monte Carlo methods, commonly

referred to as particle filters, have become an important class

of nonlinear filters that efficiently deal with both nonlinearities

and non-Gaussian noise [3]–[7]. Until now, a plethora of

particle filters have been developed such as, e.g., the bootstrap

particle filter [3], the marginal particle filter [8], the auxiliary

particle filter [9] and the variable rate particle filter [10]. How-

ever, when the dimension of the state space is high, the com-

putational complexity of these filters becomes prohibitively

high. As a result, especially for real-time applications with

high sampling rates, these particle filters cannot be used.

If the model (1) contains a linear sub-structure, subject to

Gaussian noise, then a method which is known as Rao-

Blackwellization can be exploited [11]. This results in a filter

commonly referred to as the marginalized particle filter (MPF)

or the Rao-Blackwellized particle filter, see e.g. [12]–[15]. The

MPF consists of a combined particle filter and Kalman filter,

that produce estimates with lower or identical covariance as

when the standard particle filter was used. Perhaps most im-

portant, the MPF allows us to consider high dimensional state

estimation problems within the particle filtering framework.

Another appealing advantage of the MPF is that in some cases,

the computational burden is significantly reduced as well.

The main contribution of this paper is a nonlinear filter, which

combines the strengths of both the marginalized particle filter

and the auxiliary particle filter. The resulting filter is referred

to as the marginalized auxiliary particle filter (MAPF). Related

exploitations of the Rao-Blackwellization idea are provided by

the Rao-Blackwellized variable rate particle filter, introduced

in [16] and the combination of the Rao-Blackwellized particle

filter and the marginal particle filter presented in [17]. In order

to illustrate the performance of the MAPF, a multi-sensor

aircraft tracking example is investigated.

II. MARGINALIZED AUXILIARY PARTICLE FILTER

The well-known idea behind the auxiliary particle filter

is to draw N samples {x
(j)
k , i(j)}N

j=1 from the joint density

p(xk, i|Zk), where i denotes a discrete index [9]. The index i

is then omitted, in order to obtain a sample {x
(j)
k }N

j=1 that ap-

proximates the desired filtering density p(xk|Zk). Compared
to the standard particle filter, the auxiliary particle filter can

be interpreted as a look ahead method, which at time k − 1
predicts which samples will be in regions of high likelihood at

time k. As a result, the cost of sampling particles from regions
of very low likelihoods is reduced.



Since its introduction in [9], several improvements were pro-

posed to reduce the variance of the auxiliary particle filter

[4], [18]. In the following, the marginalized auxiliary particle

filter is derived based on the modified auxiliary particle filter

presented in [18]. This algorithm has only one resampling

step at each time instance and experimentally outperforms the

original two-stage resampling algorithm proposed in [9].

The main idea underlying Rao-Blackwellization is to partition

the state vector according to

xk =

[
xnk
xlk

]

, (3)

where xnk denotes the nonlinear state variable and xlk denotes

the state variable with conditionally linear Gaussian dynamics.

Now, by straightforward application of Bayes’ rule we have,

p(xnk,xlk, i|Zk) = p(xlk|x
n
k, i,Zk)

︸ ︷︷ ︸

KF

· p(xnk, i|Zk)
︸ ︷︷ ︸

APF

, (4)

where the first density p(xlk|x
n
k, i,Zk) is evaluated analyti-

cally using the Kalman filter (KF) and the second density

p(xnk, i|Zk) is approximated using the auxiliary particle filter
(APF). In order to exploit the idea of Rao-Blackwellization

in the auxiliary particle filter, the following conditional linear

Gaussian model is introduced,

xnk = f nk−1(x
n
k−1) + Fnk−1(x

n
k−1)x

l
k−1 + wnk−1, (5a)

xlk = f lk−1(x
n
k−1) + Flk−1(x

n
k−1)x

l
k−1 + wlk−1, (5b)

zk = hk(xnk) + Hk(xnk)xlk + ek, (5c)

where wnk−1, wlk−1 and ek are assumed to be white and

Gaussian distributed according to
[

wnk−1

wlk−1

]

∼ N (0, diag(Qnk−1,Q
l
k−1)), ek ∼ N (0,Rk).

(6)

Here, the process noises wnk−1 and wlk−1 are assumed to be

independent. This is no restriction, since the case of dependent

noise can be reduced to the case of independent noise using

a Gram-Schmidt procedure [19]. Furthermore, the density of

xl0 is Gaussian, i.e., x
l
0 ∼ N (x̂l0,P0). The density of x

n
0 can

be arbitrary, but it is assumed known.

The marginalzed auxiliary particle filter for the caseHk(xnk) =
0 is summarized in Table I. For the sake of notational brevity,

the dependence of x
n,(i)
k−1 in f nk−1, f

l
k−1, F

n
k−1 and Flk−1 is

denoted as f
n,(i)
k−1 , f

l,(i)
k−1, F

n,(i)
k−1 and F

l,(i)
k−1 below.

Let us now briefly explain the MAPF. After the initialization

stage, the so-called first stage weights are evaluated (step (2)

in Table I). These weights are given by the importance density

π(i|Zk) which is proportional to the predictive likelihood. The
subsequent resampling stage assures that only particles with

high predictive likelihood will be used.

The time update stage which follows can be split into a PF and

KF time update step (step (4) in Table I). In the PF time update,

a prediction of the nonlinear states xnk is obtained from the

importance density π(xnk|i
(j),Zk). Given the nonlinear states,

the model in (5) is conditional linear. The conditioning implies

TABLE I
MARGINALIZED AUXILIARY PARTICLE FILTER

(1) Initialization:

– For i = 1, ..., N, initialize the particles x
n,(i)
0 ∼

p(xn0) and weights w
(i)
0 = 1

N
and set {x

l,(i)
0|0 ,P

(i)
0|0} =

{x̂l0,P0}.

(2) Time Update and Measurement Update (First stage

weights), i = 1, ..., N :

– Determine µ
n,(i)
k from N (xnk; x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1), e.g.,

take the mean µ
n,(i)
k = x̄

n,(i)
k|k−1, where

x̄
n,(i)
k|k−1 = f

n,(i)
k−1 + F

n,(i)
k−1 x

l,(i)
k−1|k−1,

P̄
n,(i)
k|k−1 = F

n,(i)
k−1 P

(i)
k−1|k−1 (F

n,(i)
k−1)

T + Qnk−1.

– Evaluate the first stage weights w̃
(i)
k = π(i|Zk) ∝

w
(i)
k−1 N (zk; z̃

(i)
k , S̃

(i)
k ), where z̃

(i)
k = hk(µ

n,(i)
k ) and

S̃
(i)
k = Rk and normalize the weights according to

w
(i)
k = w̃

(i)
k /

N∑

m=1
w̃

(m)
k .

(3) Resampling:

– Perform systematic resampling [5] and store for each

resampled particle the parent index, denoted by i(j).

(4) Time Update, j = 1, ..., N :

– PF: Draw samples x
n,(j)
k ∼ π(xnk|i

(j),Zk) =

N (xnk; x̄
n,(ij)
k|k−1, P̄

n,(ij)
k|k−1).

– KF: Evaluate

x
l,(j)
k|k−1 = f

l,(ij)
k−1 + F

l,(ij)
k−1 x

l,(ij)
k−1|k−1 +

L
(ij)
k−1 (z

(j)
k−1 − F

n,(ij)
k−1 x

l,(ij)
k−1|k−1),

P
(j)
k|k−1 = F

l,(ij)
k−1 P

(ij)
k−1|k−1 (F

l,(ij)
k−1 )T + Qlk−1 −

L
(j)
k−1 N

(j)
k−1 (L

(j)
k−1)

T,

where

N
(j)
k−1 = F

n,(ij)
k−1 P

(ij)
k−1|k−1 (F

n,(ij)
k−1 )T + Qnk−1,

L
(j)
k−1 = F

l,(ij)
k−1 P

(ij)
k−1|k−1 (F

n,(ij)
k−1 )T (N

(j)
k−1)

−1,

z
(j)
k−1 = x

n,(j)
k − f

n,(ij)
k−1 .

(5) Measurement Update (Second stage weights), j =
1, ..., N :

– PF: Evaluate the second stage weights w̃
(j)
k =

N (zk; ẑ
(j)

k
, S

(j)

k
)

N (zk; z̃
(ij)

k
, S̃

(ij)

k
)
, with ẑ

(j)
k = hk(x

n,(j)
k ) and S

(j)
k =

Rk, and normalize the weights according to w
(j)
k =

w̃
(j)
k /

N∑

m=1
w̃

(m)
k .

– KF: Set x
l,(j)
k|k = x

l,(j)
k|k−1 and P

(j)
k|k = P

(j)
k|k−1.

(6) Set i := j and k := k + 1 and iterate from step (2).
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that (5a) can be interpreted as a measurement equation with

the artificial measurement z
(j)
k−1. Thus, a measurement update

together with a time update step is performed for each particle

in the KF time update step, yielding the estimates of the linear

states x
l,(j)
k|k−1 and the corresponding error covariances P

(j)
k|k−1.

The measurement update step can also be decomposed into a

PF and KF measurement update stage (step (5) in Table I). In

the PF measurement update stage, the second stage weights

are evaluated taking into account the actual measurements zk.

In the KF measurement update, the measurements zk, cf. (5c),

provide no new information about the linear states xlk, since

Hk(xnk) = 0. Hence, the measurement equation (5c) cannot

be used in estimating the linear states.

An important special case for the marginalized auxiliary

particle filter arises when the matrices Fnk−1, F
l
k−1 and Hk

are independent of xnk. Then,

P
(j)
k|k = Pk|k, ∀j = 1, ...N, (7)

which implies that only 1 instead of N Riccati recursions

is needed. As a result, the computational complexity can be

significantly reduced, which of course is useful, especially

for real-time implementations.

III. ILLUSTRATING EXAMPLE

The performance of the proposed marginalized auxiliary

particle filter is investigated using a well-known radar target

tracking problem. It is assumed that an aircraft is moving in

the 2-D plane, which is modelled according to

xk =





I T · I T 2/2 · I
0 I T · I
0 0 I



 · xk−1 + wk−1, (8a)

zk =

[ √

p2
x + p2

y

arctan(py/px)

]

+ ek, (8b)

where the state vector xk contains the position, the ve-

locity and the acceleration of the aircraft, i.e. xk =
[px, py, vx, vy, ax, ay]

T
, and I denotes the identity matrix of

size 2. A stationary radar sensor at position xsens = [0, 0]T

records range and azimuth measurements, denoted zk, of the

aircraft using a sampling time of T = 1 seconds. The process
and measurement noise wk−1 and ek are assumed to be

zero-mean white Gaussian noise sequences with covariance

matrices Qk−1 = Cov[wk−1] = diag[4, 4, 4, 4, 0.01, 0.01]
and Rk = Cov[ek] = diag[100, 10−6]. Since the model in
(8) is conditional linear Gaussian, the marginalized auxiliary

particle filter can be readily applied.

The proposed marginalized auxiliary particle filter is inves-

tigated through simulations based on Nmc = 1000 Monte
Carlo trials. For each trial, the aircraft’s trajectory was

generated from (8a), where the initial state vector x0 was

drawn randomly from a Gaussian distribution with mean

x̂0 = [2000, 2000, 20, 20, 0, 0]T and error covariance matrix
P0 = diag[4, 4, 16, 16, 0.04, 0.04].
The performance of the MAPF is compared to the modified

auxiliary particle filter (APF) [18], the marginalized particle

filter (MPF) [15] with transitional prior as importance density

and the posterior Cramér-Rao lower bound (PCRLB) [20].

Here, it is worth noting that in addition simulations have been

carried out for the standard (bootstrap) particle filter. However,

the achieved performance results were even worse than for the

APF and thus are not shown.

In Figs. 1 and 2, the root mean squared error (RMSE) and

PCRLB of the aircraft’s position and acceleration are shown

for the different particle filter algorithms using N = 250
particles. From Fig. 1 it can be seen that in terms of position

RMSE the proposed MAPF yields the best results, followed by

the MPF and the APF. In terms of acceleration RMSE, cf. Fig.

2, the APF yields the worst results, whereas the performance

of the MPF and MAPF are practically the same as both filters

attain the PCRLB.

In addition, simulations were performed for the different filters

with N = 100, 250 and 2000 particles. The results in terms of
the number of diverged trials, average RMSE and processing

time are summarized in Table II. Here, the processing time

denotes the time it takes to perform a single iteration of the

algorithm and serves here as an indicator for the expected

computational complexity.

The simulations show that compared to the APF, the MAPF

provides the best performance with approximately the same

computational complexity. As expected, the computational

complexity of MAPF is larger than that of the MPF. However,

the performance of the MAPF is superior to the performance of

the MPF. This becomes obvious especially when N is small,
whereas for large N the performance is approximately the

same.

IV. CONCLUSION

In this paper, we have proposed the marginalized auxiliary

particle filter for nonlinear systems with a conditionally lin-

ear Gaussian sub-structure. The filter has been applied to a

multi-sensor aircraft tracking problem and its performance is

compared with the auxiliary particle filter and the marginal-

ized particle filter. Simulation results have shown that the

marginalized auxiliary particle filter outperforms the auxiliary

particle filter in terms of RMSE, while the computational

complexity is almost equal. Compared to the marginalized

particle filter, the strength of the marginalized auxiliary particle

filter is its superior performance when the number of particles

is small. However, the price that has to be paid is an increased

computational complexity.
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