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Kurzfassung

Für Mobilfunksysteme der nächsten Generation ist zu erwarten, dass Massendienste,

in denen dieselben Informationen an eine Gruppe von Teilnehmern (Multicast) oder

an alle Teilnehmer (Broadcast) verbreitet werden, deutlich an Bedeutung gewinnen.

Dies zeigt sich unter anderen auch an den verstärkten Standardisierungsaktivitäten

für die Nutzung dieser Dienste in gegenwärtigen Mobilfunknetzen. Beispiele für solche

Massendienste sind u.a. Audio-/Video-Streaming, Newsclips, Lokalisierungsdienste und

Herunterladen.

Die vorliegende Arbeit behandelt das Problem der Strahlformung in Mehrantennensy-

stemen für Multicast-Dienste. Sowohl Szenarien mit einer einzelnen Gruppe als auch

mit mehreren Gruppen werden dabei berücksichtigt, wobei im ersten Fall nur eine einzi-

ge Multicast-Gruppe pro Ressource zugeteilt werden darf und im zweiten Fall mehrere

Multicast-Gruppen pro Ressource erlaubt sind.

Es wird ein neues Systemmodell für Multicast-Szenarien vorgeschlagen, das die mathe-

matische Grundlage für die Analyse der betrachteten Algorithmen bildet. Durch die

entsprechende Wahl der Systemparameter können Sonderfälle wie z.B. der Mehrnutzer-,

der Einzelnutzer- und der Einzelgruppen-Fall aus dem allgemeinen Modell abgeleitet

werden.

Verschiedene Algorithmen zur Strahlformung, die aus Unicast-Szenarien bekannt sind,

werden für Multicast-Szenarien formuliert. Desweiteren wird ein neuer Algorithmus

namens User-Selective Matched Filter (USMF) vorgeschlagen, der speziell an die An-

forderungen für Multicast-Szenarien angepasst ist. Dieser Algorithmus bildet einen gu-

ten Kompromiss zwischen Leistungsfähigkeit und Komplexität. Durch die gemeinsame

Nutzung der Ressourcen für den Fall mehrere Gruppen entsteht Interferenz zwischen

den Gruppen, die durch entsprechende Algorithmen zur Strahlformung unterdrückt

werden soll. Zu diesem Zweck werden lineare und nichtlineare Algorithmen, die aus

Unicast-Szenarien bekannt sind, an Multicast-Szenarien mit mehreren Gruppen ange-

passt. Durch zusätzliche Modifikationen der Algorithmen können bessere Ergebnisse

für Multicast-Dienste erzielt werden. Die vorgestellten Algorithmen werden sowohl für

den Fall einzelner als auch mehrerer Gruppen bezüglich ihrer Leistungsfähigkeit und

Komplexität analysiert.

Schließlich wird die Zuweisung der Ressourcen zu den Multicast-Gruppen analysiert,

die einen erheblichen Einfluss auf die Algorithmen zur Strahlformung hat. Es werden
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mehrere Alternativen für die Aufteilung der Gesamtsendeleistung zwischen den einzel-

nen Trägern eines Mehrträgersystems mit einer einzelnen Gruppe in einem Multicast-

Szenario vorgeschlagen und analysiert. Einer davon ist eine Erweiterung des traditionel-

len Waterfilling-Algorithmus für den Unicast-Fall. Zusätzlich werden einige Vorschläge

für die Ressourcenzuweisung in Mehrträger-Mehrgruppen-Multicastsystemen gemacht.
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Abstract

In the context of next-generation wireless systems, it is expected that services targeted

at mass content distribution become widely popular, which is reflected for instance in

the standardization activities for their implementation within current cellular networks.

Examples of such services are audio/video streaming, mobile TV, messaging, news clips,

localized services, download, among others. Their common characteristic is that the

same information has to be transmitted to a group of users (multicast) or to all users

(broadcast) within a certain coverage area.

This thesis deals with the problem of multicast beamforming for multi-antenna wireless

cellular networks. Both single-group and multi-group scenarios are taken into account,

with the former corresponding to a single multicast group per radio resource and the

latter referring to multiple multicast groups per resource.

In order to provide the necessary mathematical framework for the analysis of the al-

gorithms, a general system model is proposed for the multi-group multicast scenario.

Particular cases, such as the multi-user, single-group, and single-user cases, can be

derived from the general model by properly adjusting the system parameters.

Different beamforming algorithms known from the unicast case are formulated for the

single-group multicast case. Moreover, a new algorithm termed User-Selective Matched

Filter (USMF) specifically designed for the multicast case is proposed, which is shown

to provide a good trade-off between performance and complexity. For the multi-group

multicast case, the resource sharing results in inter-group interference, which needs to

be suppressed by the beamforming algorithms. Linear and non-linear algorithms known

from the unicast case are formulated for the multi-group multicast scenario. These

algorithms are also further modified with the purpose of improving the performance of

the multicast services. The strategies proposed for both single-group and multi-group

cases are analyzed in terms of their performance and computational complexity.

Finally, since the allocation of resources among the multicast groups is expected to have

a significant impact on the performance of the beamforming algorithms, this issue is

addressed as well. The analysis focuses on the proposal and evaluation of different al-

ternatives for allocating the power among the subcarriers of a multi-carrier single-group

multicast system. One of these alternatives is an extension of the traditional unicast

waterfilling algorithm for the multicast case. Additionally, some considerations are

made with regard to the allocation of resources in multi-carrier multi-group multicast
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scenarios. It is shown that, in spite of the inter-group interference, the sharing of re-

sources among unicast and multicast users provides better performance than isolating

them into different resources.
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Chapter 1

Introduction

1.1 Multicast services in wireless networks

1.1.1 Service characterization

In the context of next-generation wireless systems, it is expected that services targeted

at mass content distribution become widely popular. Examples of such services are

audio/video streaming, mobile TV, messaging, news clips, localized services, download,

among others.

Multicast services have the characteristic that the same information has to be trans-

mitted to a group of recipients. Broadcast services can be seen as a particular case of

multicast services, in which there is not a specific target group, i.e., all users belong to

the same group. Such services can be implemented through Point-to-Multipoint (P2M)

connections, in which a single source transmits the data to all users belonging to the

intended group. In information theory, the multicast concept is usually understood as

the downlink [Sha48,BB99], i.e., different data streams are transmitted to the users,

but in this work the strict definition of multicast is adopted, i.e., the same information

is transmitted to the users.

The support of multicast services in cellular networks has been introduced by both the

Global System for Mobile communications (GSM) and Universal Mobile Telecommuni-

cations System (UMTS) networks in the form of the Multimedia Broadcast/Multicast

Service (MBMS) [3GP06a,BH05,OM03]. More recently, a multicast architecture based

on MBMS has been proposed in [JXCN07] for Worlwide interoperability for Microwave

Access (WiMAX) networks.

The MBMS specification introduces additional functionalities and procedures, which

have a certain impact on the network architecture. The support of P2M connections

is one of the main features, since it avoids the establishment of individual Point-to-

Point (P2P) connections for each member of the multicast group. This has the benefit of

reducing the data traffic within the core network, due to the elimination of redundant

connections, as well as reducing the number of radio resources required at the base

stations for multicast transmission. For other types of networks, such as multi-hop
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systems, the establishment of the P2M connections may encompass several network

hops. The problem of determining the best routes for the distribution of the multicast

data has been approached by several previous works [Mir01,Var02].

In this work, a single wireless hop between source and recipients is taken into account.

More specifically, it is here assumed that the P2M connection is realized over the radio

link between base station and users within a cell of a wireless cellular network.

1.1.2 Multicast scenario description

In this section, the multicast scenario is described when taking into account a single-

cell of the cellular system. Fig. 1.1 illustrates the considered scenario, in which there

is a base station at the corner and the mobile stations are uniformly distributed within

the cell. Representing a sectorized cell environment, the figure shows the connections

between the base station and mobile stations, which can be either P2P or P2M. The

former allocates one radio resource per user, whereas the latter allocates a single radio

resource for all users of a multicast group.

P2M connections present the advantage of higher resource efficiency than P2P, since less

resources are required in order to serve the multicast users. In spite of this advantage,

the sharing of radio resources by the users of a same multicast group presents some

drawbacks as well. By having the users grouped together, it is no longer possible to

fully adapt to the individual radio link conditions of each user. This limited adaptivity

may have a negative impact on the quality perceived by the users. As a consequence,

the choice between P2M and P2P depends on the trade-off between resource efficiency

and user quality, which can be summarized as follows:

• P2P: resource inefficient vs. fully adaptive (increased user quality),

• P2M: resource efficient vs. partially adaptive (reduced user quality).

In order to take advantage of the resource efficiency of P2M, the problem with re-

gard to the user quality can be mitigated by applying adaptive techniques specifi-

cally designed for the multicast case. Examples of such techniques are: power con-

trol [Löf98a,Löf98b], error control mechanisms [RZF04, JLSX05], non-uniform modu-

lation [PS99,Lar03,IGAG05], macrodiversity [BH05,OKKK05], among others. Besides

these techniques, the introduction of adaptive antenna arrays at the base station may

also contribute to the performance improvement of multicast services. The multicast
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P2M

P
2
P

PowerFigure 1.1. Single-cell multicast scenario with P2P and P2M connections.

beamforming problem consists of determining suitable antenna weight vectors, assum-

ing that knowledge of the radio link of all multicast users is available at the transmitter.

The following two different types of multicast beamforming techniques are regarded:

• Single-group: Each multicast group is assigned to a different radio resource. The

single-group multicast beamforming corresponds to an extension of the single-

user unicast beamforming to the multicast case.

• Multi-group: Multiple multicast groups can share the same radio resource. This

sharing of resources among groups leads to the problem of intra-cell co-channel

interference, which needs to be addressed by the multicast beamforming. Due to

this characteristic of separating streams through spatial processing, this case can

also be regarded as Spatial Division Multiple Access (SDMA). The multi-group

multicast beamforming corresponds to an extension of the multi-user unicast

beamforming to the multicast case.

1.1.3 State-of-the-art

A summary of the state-of-the-art of multicast beamforming is presented in Table

1.1. Table 1.1 is organized according to the type of multicast beamforming and the

optimization criterion considered by the algorithms. Note that a more detailed review

of the state-of-the-art is presented at the beginning of each chapter of this thesis.

For the single-group case, two different optimization criteria have been considered by

previous works, which aim at maximizing either the average or the minimum Signal-to-

Noise Ratio (SNR) perceived by the multicast users, while subject to transmit power
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Table 1.1. Summary of previous contributions to multicast beamforming.

Grouping Criterion Reference Remarks

Single-group

Maxim. of
avg. SNR

[NLTW98,Lop02] Drawback of unbalanced SNR
values among the users.

Maxim. of
min. SNR

[ZSV02,ZSV04] Iterative algorithms for multicast
CDMA systems.

[SL04] Solution through Sequential
Quadratic Programming (SQP).

[SD04,SDL06] Simplification through Semi-
Definite Relaxation (SDR).

[HSJ+07] Iterative SNR-increasing update
algorithm.

Multi-group

Interference
suppression

[Lop02] Suggestion of a null-space-based
approach.

[Khi04] DPC-based precoding for sum
rate maximization.

SINR target
provision

[KSL05,KSL06] Simplification through Semi-
Definite Relaxation (SDR).

[GS05a] DPC-based precoding with
single-group SDR.

Maxim. of
min. SINR

[GS06,KSL07] Bisection method.

constraints. Note that the power minimization problem subject to the provision of a

certain SNR target has been considered as well [SD04,SDL06], but it was shown to be

equivalent to the max-min SNR problem up to a real scaling factor [SD04,SDL06]. The

maximization of the average SNR is not quite a suitable criterion, since it may lead to

unbalanced SNR values among the users [NLTW98,Lop02]. The maximization of the

minimum SNR, on the other hand, is a fair criterion, which has been more extensively

investigated. Nevertheless, the max-min problem was shown to be NP-hard [SDL06],

thus requiring efficient suboptimal algorithms in order to allow for a feasible practical

implementation. Previous works have proposed solutions based on the computationally

intensive Sequential Quadratic Programming (SQP) [SL04], the simplification of the

problem through Semi-Definite Relaxation (SDR) [SD04, SDL06], as well as specific

iterative algorithms [ZSV02,ZSV04,HSJ+07].

The multi-group case has so far been investigated taking the following criteria into

account: the complete suppression of inter-group interference, the minimization of the

transmit power subject to providing a certain target Signal-to-Interference plus Noise



1.2 Problem statement 5

Ratio (SINR), and the maximization of the minimum SINR. The first criterion is briefly

suggested in [Lop02], while in [Khi04] it aims at the sum rate maximization, which is

highly unfair. The second criterion is the subject of [KSL05,KSL06,GS05a], for which

SDR-based algorithms are proposed. In [GS06,KSL07], it is shown that the solution of

the third criterion can be obtained from the solution of the second criterion by means

of a bisection method.

1.2 Problem statement

In the previous section it has been shown that multicast beamforming stands out as one

of the most promising adaptive techniques for improving the quality of the multicast

services, still with a number of open problems to be investigated. In this section, the

main problems and goals approached by this thesis are discussed.

First, with multicast beamforming being the main focus of the thesis, a general mathe-

matical model of the system is required, which must be valid for all possible configura-

tions, i.e., single-user/single-group and multi-user/multi-group. Next, efficient multi-

cast beamforming algorithms need to be proposed and analyzed for both single-group

and multi-group scenarios. Finally, since the performance of the multicast beamform-

ing algorithms depends to a certain extent on how the radio resources are allocated to

the users, this issue needs to be addressed as well. These topics can be detailed in the

following list of problems to be solved:

1. How can a general system model be formulated for the multi-group multicast

case?

2. How can adaptive beamforming be performed for the single-group multicast sce-

nario? Is it possible to design efficient algorithms specifically for the multicast

case?

3. How can linear SDMA precoding schemes be efficiently extended to the multi-

group multicast scenario?

4. How can non-linear SDMA precoding schemes be efficiently extended to the multi-

group multicast scenario?

5. How best can the resources be allocated, in terms of throughput maximization

and user fairness, for multi-carrier systems with multiple multicast groups?

6. How can this resource allocation be efficiently extended to the SDMA scenario,

in which different multicast groups can share the same channel?
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1.3 Contributions and thesis overview

This section discusses the main contributions of the thesis and how the thesis is orga-

nized. In the following, the contents of each chapter are briefly described, along with

the contributions presented by each one of them.

In Chapter 2, with the purpose of solving problem 1 of the problem statement, a

new general system model is developed for the multi-group multicast scenario. The

proposed model specifies the transmission/reception chain, the system parameters, and

both complete and reduced representations. It is shown that particular cases, such as

the multi-user, single-group, and single-user cases, can be derived from the general

model by properly adjusting the system parameters.

Chapter 3 presents a formulation of beamforming algorithms for the single-group multi-

cast case as an extension of algorithms known for the unicast case. The algorithms are

the Matched Filter (MF), Zero-Forcing (ZF), Minimum Mean Square Error (MMSE),

Tomlinson-Harashima Precoding (THP), and Switched Fixed Beams (SFB). The for-

mulation of these algorithms answers the first question of problem 2. Additionally, a

new suboptimal algorithm called USMF, which is specifically designed for the multi-

cast case, is proposed in order to address the second question of problem 2. In Section

3.5, an analysis of the algorithms’ performance in terms of the uncoded Bit Error

Rate (BER) and worst-user SNR is presented. The analysis also takes into account the

impact of different channel models and different multicast group sizes, as well as the

complexity order of the algorithms.

The multi-group multicast case is approached by Chapter 4. New linear and non-linear

beamforming algorithms are formulated as an extension of algorithms known for the

unicast case. The algorithms are the MF, ZF, MMSE, SINR Balancing (SB), THP, and

Vector Precoding (VP). Additionally, with the purpose of improving the performance

of the multicast services, the algorithms are further enhanced, being called “multicast-

aware” (MA). The linear and non-linear algorithms are presented in Sections 4.4 and

4.5, respectively, which refer to problems 3 and 4. A performance and complexity

analysis is presented in Section 4.6. For both linear and non-linear algorithms it is

investigated which gains the multicast awareness is capable of providing with regard

to the non-multicast-aware algorithms.

In Chapter 5, the theme of resource allocation in multi-carrier multicast systems is

approached. The term “resources” refers to both the available subcarriers and the

available transmit power. The main contribution of the chapter is the proposal and
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analysis of different power allocation schemes, which is presented in Section 5.3. The

algorithms take into account different optimization criteria, such as throughput max-

imization and user fairness, thus addressing problem 5. One of these algorithms is

an extension of the traditional unicast waterfilling algorithm for the multicast case.

Some new approaches for the allocation of resources in SDMA scenarios are proposed

in Section 5.5, which refers to problem 6.

Finally, a summary of the main conclusions of the thesis is presented in Chapter 6.
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Chapter 2

System model

2.1 Introduction

This chapter presents a detailed description of the considered radio system. A general

system model is derived for the multi-group multicast scenario with multiple antennas

at the base station and single-antenna terminals. This model is a generalization of

the unicast-only models, e.g. [PNG03,GS05b], as well as of the single-group multicast

models, e.g. [SL04,SDL06]. It is also a further development of the multi-group multicast

models presented in [KSL05, GS05a]. The proposed model provides details on the

transmission/reception chain and introduces two possible representations of the system.

Moreover, the system parameters are flexible enough, so that they can be adjusted to

represent particular cases of the general model.

This chapter is organized as follows. In Section 2.2, some general system assumptions

are discussed. Section 2.3 describes the proposed general multi-group multicast system

model. In Section 2.4, it is shown that in the situation of other user scenarios, such

as the single-group multicast or single-user/multi-user unicast, particular cases of the

general model can be derived. Finally, Section 2.5 presents how the model can be

extended to the case of multi-antenna user terminals.

2.2 System assumptions

This section describes the main characteristics of the system, which are considered

throughout the thesis unless otherwise stated. The system corresponds to the downlink

of a multicast, multi-carrier, multi-antenna, SDMA radio communication system. A

more detailed description of these concepts follows:

• Multicast: There is a total of N users in the system, which are divided into K

multicast groups, i.e., groups of users expecting the same data stream. A unicast

user can be seen as a multicast group of size 1.
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• Multi-carrier: “Modern” wireless communications systems, e.g. Wireless Local

Area Network (WLAN) [ANS03], WiMAX [IEE04], and the 4G long term evo-

lution of UMTS Terrestrial Radio Access Network (UTRAN) [3GP06b], employ

multi-carrier modulation schemes in the downlink, such as Orthogonal Frequency

Division Multiplexing (OFDM). For this reason, a multi-carrier system contain-

ing F available subcarriers is considered. Each subcarrier is assumed to have a

tight enough bandwidth, i.e., less than the coherence bandwidth of the channel,

to ensure flat fading and negligible inter-symbol interference [Pro95,Skl97].

• Multi-antenna: Adaptive antenna arrays are a key technology for enhancing the

performance of wireless communications systems. An L-element adaptive an-

tenna array is assumed to be installed at the base station, while the users have

single-antenna devices. Since there are multiple antennas at the transmitter and

multiple distributed receive antennas, this can also be called a Multiple Input

Multiple Output (MIMO) system. Due to the orthogonality of the subcarriers, it

is assumed that the antenna array can independently perform beamforming for

the signals transmitted at each subcarrier (see Section 9.3 of [PNG03]).

• SDMA: In order to further improve the spectral efficiency of the system, the

antenna array can be employed to perform SDMA. This technique separates the

signals in the space dimension and allows that multiple streams be transmitted

simultaneously on the same channel. Several works, e.g. [SSH04,Qiu05], employ

the expression MIMO Multi User (MIMO-MU) as a synonym to SDMA, where

the “multi-user” term refers to multiple unicast users being served simultaneously.

Similarly, the term “multi-group” multicast has been employed, e.g. in [GS06],

to refer to an SDMA scenario in which multiple multicast groups share the same

channel. Throughout the thesis the terms multi-user/multi-group refer to SDMA

scenarios, while the terms single-user/single-group refer to non-SDMA scenarios.

2.3 General system model

In this section, the general system model is presented. Initially, in order to simplify

the notation, the unicast-only case is considered, in which each user expects a different

data stream. Later in this section, however, the scenario is extended to the multicast

case.

Let N denote the total number of data streams, F the number of subcarriers, Nf the

number of streams per subcarrier, and L the number of antenna elements at the base
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station. The variables f ∈ {1, . . . , F}, n ∈ {1, . . . , Nf}, and l ∈ {1, . . . , L} represent

the index of subcarriers, users, and antenna elements, respectively.

Fig. 2.1 illustrates the multi-carrier multi-antenna transmission chain. The low-pass

frequency domain is considered [Kes07]. The variables depicted in the figure are defined

as follows: {s1, . . . , sN} represents the set of all input data symbols; sn,f denotes a

data symbol mapped to user n on subcarrier f , xl,f corresponds to the output of the

beamformer on antenna element l and subcarrier f , ν denotes the frequency, xl(ν) is

the spectral signal transmitted by antenna element l in the frequency domain, and

yn(ν) is the spectral signal received by user terminal n in the frequency domain.

Subcarrier
mapping

s1,1

s2,1

sN1,1

Beamformer

Beamformer

Beamformer

SC1

s1,2

s2,2

sN2,2

SC2

s1,F

s2,F

sNF ,F

SCF

Data
Streams

s1

s2

sN OFDM
modulator

OFDM
modulator

OFDM
modulator

x1(ν)

x2(ν)

xL(ν)

y1(ν)

y2(ν)

yN (ν)

x1,1x1,1

x2,1

x2,1

xL,1

xL,1

x1,2

x1,2

x2,2x2,2

xL,2

xL,2

x1,F

x1,F

x2,F

x2,F

xL,FxL,F

Radio channel

User

User

User

Figure 2.1. Overall illustration of the multi-carrier multi-antenna transmission chain.

The N data streams of all users are generated and then are mapped onto the F available

subcarriers. It is here assumed that Nf streams are assigned per subcarrier. At each

subcarrier, beamforming is performed and the resulting L spectral signals are provided

to the L antenna elements for transmission. At each antenna branch L the spectral

signals are fed into the OFDM modulator [HP03,SBM+04], which performs the Inverse

Fast Fourier Transform (IFFT) and inserts the Cyclic Prefix (CP), and then are finally

transmitted.

The spectral signal xl(ν) of each antenna element l is transmitted over a linear radio

channel and is received by user n. Note that each user has a different channel. It is

assumed that the OFDM symbol time Ts is short enough so that the radio channel

can be considered time-invariant during Ts. As a matter of fact, this assumption of

time-invariance is assumed to be valid for a whole frame duration Tf, which corresponds

to a number of consecutive OFDM symbols. The radio link between transmit antenna

element l and user n has a transfer function denoted by Hn,l(ν).



12 Chapter 2: System model

The spectral signal yn(ν) received by each user corresponds to the sum of the spectral

signals xl(ν) transmitted by each antenna element l multiplied by their respective

transfer function Hn,l(ν). The received spectral signal is given by

yn(ν) =
L
∑

l=1

xl(ν) Hn,l(ν) + zn(ν) , (2.1)

where zn(ν) corresponds to additive white Gaussian noise in the frequency domain.

Note that the considered OFDM system assumes a CP large enough to ensure flat

fading per subcarrier. This implies that there is no inter-symbol interference, i.e., the

channel coefficients for a certain time instant do not depend on previous samples. It

is also assumed that the OFDM modulation guarantees the orthogonality among the

subcarriers, so that they can be analyzed individually.

Let Hn,l,f denote the sampled frequency response of the channel between user n and

antenna l on subcarrier f . Due to the structure of the OFDM modulator/demodulator

[PNG03], which includes the IFFT/FFT and the cyclic prefix operations, the expression

of the spectral signal sample received by user n at subcarrier f can be reduced to

yn,f =
L
∑

l=1

xl,fHn,l,f + zn,f . (2.2)

For simplicity of notation, the subscript (·)f is from now on dropped from the equations,

resulting in

yn =
L
∑

l=1

xlHn,l + zn , (2.3)

for which a single subcarrier is considered in the following.

Now the precoding and decoding procedures, which complete the description of the

transmission/reception chain, are explained. Let sn denote the information symbol in-

tendend for transmission to user n, which may assume complex values drawn from the

symbol constellation of the considered digital modulation scheme, e.g. Mo-Phase Shift

Keying (PSK) or Mo-Quadrature Amplitude Modulation (QAM), where Mo denotes

the modulation order. These N symbols are precoded before transmission, i.e., they

pass through a linear filter which produces an equivalent symbol xl for each transmit

antenna element l. This transmit filter, which is also often called precoding or beam-

forming filter [PNG03,JUN05], can be designed based on channel knowledge available

at the base station. Its optimization for different scenarios is the topic of Chapters 3

and 4. Each filter coefficient is denoted by ml,n, which is associated to antenna element
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l and user n. Each equivalent symbol xl is a composition of all sn symbols and the

corresponding filter coefficients, as illustrated in Fig. 2.2, and is given by

xl =
N
∑

n=1

snml,n . (2.4)

The decoding procedure is done after the OFDM demodulation at each user terminal.

The sample of the received spectral signal yn is passed through a receive filter with

coefficient dn. The receive filter design is discussed later in this section. The output of

the filter corresponds to the estimate ŝn of data symbol sn, which is illustrated in Fig.

2.3 and is given by

ŝn = yn dn =

(

L
∑

l=1

(

N
∑

n=1

snml,n

)

Hn,l + zn

)

dn . (2.5)

The system representation in (2.5) can also be expressed in terms of matrices and

vectors. The data symbols sn are grouped into vector s ∈ C
N . The coefficients ml,n of

the transmit filter are stacked within matrix M ∈ C
L×N , which is also called modulation

matrix, such as in [SSH04]. Matrix H ∈ C
N×L contains the channel coefficients Hn,l

corresponding to all radio links between transmit antenna elements and user terminals.

The noise components zn are grouped into vector z ∈ C
N . The receive filter coefficients

dn of all user terminals are stacked into a diagonal matrix D ∈ C
N×N , which is also

usually called demodulation matrix. The elements outside the diagonal are zero since

no receiver cooperation is assumed. The estimates of the data symbols are grouped

into vector ŝ ∈ C
N , which is given by

ŝ = DHMs + Dz. (2.6)

Fig. 2.4 depicts the block diagram of the system. Note that the intermediate transmit

and receive samples xl and yn are also grouped into vectors x ∈ C
L and y ∈ C

N ,

respectively, where

x = Ms , (2.7)

y = HMs + z . (2.8)

Since matrices M and D contain the transmit and receive filter coefficients, respectively,

these matrices are often referred to as filters themselves in the following. Both M and

D were so far assumed to be linear filters. In Chapter 4, however, non-linear versions of

M and D are considered as well. The reason for the general system model to consider

only linear transmit and receive filters is that, as shown in Chapter 4, the non-linear

filters also have an equivalent linear representation.



14 Chapter 2: System model
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s2

sN

xl

...

Figure 2.2. Illustration of symbol xl composed at each antenna element l.

� �Hn,1
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xL
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...

dn

yn ŝn

Figure 2.3. Illustration of the output ŝn for each user n.

�s
M H D
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ŝx y

Figure 2.4. Block diagram of the general system model in the frequency domain.

The system model is not yet complete at this point, since the multicast characterization

is still missing. For this purpose it is necessary to introduce a pair of auxiliary vectors

and a set. Let K denote the total number of multicast groups. The number of users

within each group is represented by vector g ∈ Z
K , whose kth element gk ∈ {1, . . . , N}

indicates the number of users within group k ∈ {1, . . . , K}. Note that the unicast

users can be interpreted as multicast groups of unit size and that
∑K

k=1 gk = N . In

order to associate which users belong to which group, an index vector b ∈ Z
N is

also introduced, whose nth element bn ∈ {1, . . . , K} indicates the group to which user
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n belongs. Finally, the set Nk is defined, which contains the indices of the users

belonging to group k, i.e., for which bn = k. For example, in a system with two unicast

users and one multicast group composed of two users, we would have: N = 4, K = 3,

g = [1, 1, 2]T, b = [1, 2, 3, 3]T, N1 = {1}, N2 = {2}, and N3 = {3, 4}. In order to

better illustrate some concepts, in the following, this particular system configuration

will be again used as an example, being referred to as the exemplary system.

An alternative representation for the system in (2.6), called reduced representation,

is now presented. Since the users of a multicast group expect the same stream, the

number K of multicast groups is also equivalent to the number of different data streams.

For this reason there are N−K repeated entries within vector s ∈ C
N . The removal of

such repeated entries results in vector s′ ∈ C
K . This operation can be mathematically

expressed as

s′ = Ts , (2.9)

where T ∈ R
K×N
+ is a transformation matrix with the nth column given by tn = g−1

bn
ebn

,

for which ei corresponds to the ith column of the identity matrix of dimension K. In

the case of the exemplary system, matrix T ∈ R
3×4 is given by

T =





1 0 0 0
0 1 0 0
0 0 0.5 0.5



 . (2.10)

Fig. 2.5 illustrates, for the exemplary scenario, the difference in terms of dimension

between the complete and reduced representations, with the former containing 4 el-

ements and the latter 3 elements. In the complete representation there is a direct

correspondence between the indices of the actual and estimated data symbols. In the

reduced representation, however, several user terminals may provide estimates to the

same data symbol, e.g., ŝ3 and ŝ4 relate to data symbol s′3.

The reduced dimension of the data vector also leads to a reduced modulation ma-

trix M′ ∈ C
M×K , i.e., instead of one beamforming vector per user there is now one

beamforming vector per multicast group. Let mi and m′
i represent the ith column of

matrices M and M′, respectively. They are related by

m′
k =

∑

n∈Nk

mn , for k = 1, . . . , K . (2.11)

Matrix M′ can also be written as the following transformation of matrix M:

M′ = MT+ , (2.12)



16 Chapter 2: System model

s1

s2

s3

s4 = s3

s′1 (User 1)

s′2 (User 2)

s′3 (Users 3 and 4)

Transformation

T

Figure 2.5. Complete (left) and reduced (right) representations for the exemplary
scenario.

where T+ ∈ R
N×K is the right pseudoinverse of matrix T in (2.9). T+ has its nth row

given by t+
n = eT

bn
, for which ei corresponds to the ith column of the identity matrix of

dimension K. In the case of the exemplary system, matrix T+ ∈ R
4×3 is given by

T+ =









1 0 0
0 1 0
0 0 1
0 0 1









. (2.13)

The complete and reduced representations have different symbol vectors and modula-

tion matrices, nevertheless they still represent the same system. This can be confirmed

by the following equation:

M′s′ = MT+Ts = Ms . (2.14)

Note that, even though T+T is not an identity matrix, it can be shown that T+Ts = s,

due to the repeated entries within s. This same property can also be used to isolate s

in (2.9), which leads to

s = T+s′ . (2.15)

After substituting M′ and s′ in (2.6), the system equation can be rewritten in reduced

form as

ŝ = DHM′s′ + Dz. (2.16)

From this system equation, the expression for the estimated data symbol of each user

n can be written as

ŝn = dnhnm
′
bn

s′bn
+

K
∑

k=1, k 6=bn

dnhnm
′
ks

′
k + dnzn , (2.17)

where hn corresponds to the nth row of matrix H. The three summands correspond,

respectively, to the signal, interference, and noise parts of ŝn.
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The design of the transmit filter is the topic of Chapters 3 and 4. The receive filter,

on the other hand, can already be determined at this point. This independent receive

filter determination does not necessarily lead to the optimal solution in terms of joint

transmit/receive design, but it represents a simple approach that can be implemented

regardless of the transmit filter. As it has been previously mentioned, there is an

independent receive filter dn ∈ C at each user terminal. It is assumed that each user

terminal n knows the equivalent radio channel to the base station, which is given

by hnm
′
bn
∈ C. This information can be obtained, for example, if the base station

transmits pilot symbols at the beginning of each OFDM frame, so that the user terminal

can estimate the equivalent channel. It is here assumed that the receive filter satisfies

the constraint that, in the absence of noise and interference, the estimated symbols are

exactly the same as the original data symbols. This leads to

dnhnm
′
bn

s′bn
= s′bn

=⇒ dnhnm
′
bn

= 1 =⇒ dn = (hnm
′
bn

)−1 , (2.18)

and the filter expression in matrix form is given by

D = diag(h1m
′
b1

, . . . ,hNm′
bN

)−1 , (2.19)

where the diag(·) operator returns a diagonal matrix when the argument is a vector or

it returns a vector with the main diagonal elements when the argument is a matrix.

Next, the system is further characterized by defining the downlink SINR, the transmit

power constraints, and the signal covariance matrices.

The expression for the average downlink SINR γn, measured at each user terminal

n, corresponds to the average of the SINR measurements performed at each OFDM

symbol time over the whole OFDM frame duration Tf. As previously mentioned, it is

assumed that during the period of time Tf, the channel as well as the transmit and

receive filters are time-invariant. The random variables correspond to the data symbols

and noise. The SINR is calculated for a given channel realization, and a large enough

number of symbols is considered, such that the symbol and noise powers converge to

their average values. Taking (2.17) into account, the SINR γn is given by

γn =
E{|dnhnm

′
bn

s′bn
|2}

E

{

K
∑

k=1, k 6=bn

|dnhnm
′
ks

′
k|2
}

+ E{|dnzn|2}
=

=
|dn|2E{|s′bn

|2}|hnm
′
bn
|2

|dn|2
K
∑

k=1, k 6=bn

E{|s′k|2}|hnm
′
k|2 + |dn|2E{|zn|2}

=

=
σ2

s |hnm
′
bn
|2

K
∑

k=1, k 6=bn

σ2
s |hnm

′
k|2 + σ2

z

, for n = 1, . . . , N ,

(2.20)
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where σ2
s and σ2

z correspond, respectively, to the average symbol and noise power.

It is assumed that the maximum power available for transmission is denoted by P . As

a consequence, the design of matrix M must satisfy the following power constraint:

E{||Ms||2} = E{sHMHMs} = tr(MHME{ssH}) = tr(MHMRs) ≤ P , (2.21)

where tr(·) denotes the trace of a matrix and Rs = E{ssH} ∈ C
N×N is the signal

covariance matrix. Note that, in the case of uncorrelated and equiprobable symbols,

Rs corresponds to a block diagonal matrix, with each block k equal to σ2
sJ ∈ R

gk×gk ,

where J corresponds to a matrix of ones. Equivalently, with M′ given by (2.11), the

constraint may also be expressed as:

tr(M′HM′R′
s) ≤ P , (2.22)

for which R′
s = E{s′s′H} ∈ C

K×K . Considering the assumption of uncorrelated and

equiprobable symbols, R′
s = σ2

sI ∈ R
K×K , where I corresponds to the identity matrix.

An example of matrices Rs and R′
s, considering the exemplary system, follows:

Rs =









σ2
s 0 0 0
0 σ2

s 0 0
0 0 σ2

s σ2
s

0 0 σ2
s σ2

s









, R′
s =





σ2
s 0 0
0 σ2

s 0
0 0 σ2

s



 . (2.23)

2.4 Particular cases

2.4.1 Introduction

In this section, particular cases of the general system model are derived. These par-

ticular cases are obtained through a proper adjustment of the system parameters. All

particular cases represent multi-carrier multi-antenna systems. They differ with regard

to whether or not they employ SDMA and whether unicast or multicast users are con-

sidered. The following particular system model cases are considered: the single-group

multicast in Section 2.4.2, the multi-user unicast in Section 2.4.3, and the single-user

unicast in Section 2.4.4.

The single-group multicast model corresponds to the case in which only one multicast

group is allowed per subcarrier, and it is considered in Chapter 3. The other two

unicast models are presented for illustration and comparison purposes. The multi-user

unicast model corresponds to an SDMA scenario with only unicast users, whereas the

single-user unicast model represents the case in which only a single unicast user is

allowed per subcarrier.
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2.4.2 Single-group multicast

The single-group multicast scenario corresponds to a situation in which only users

of the same multicast group share the same subcarrier. In this case, the number of

multicast groups K and the auxiliary vectors g and b assume the following values:

K = 1 , (2.24a)

g ∈ Z | g = N , (2.24b)

b ∈ Z
N | b = 1 . (2.24c)

When applying these parameters to the general model, it is verified that the complete

form of the system equation remains the same as (2.6), whereas the reduced form is

simplified. In the reduced form, the transmit filter is expressed by vector m ∈ C
M

and a single data symbol s ∈ C is considered. Note that, in order to simplify the

reduced form notation, the (·)′ symbol has been dropped, since both forms can now be

identified by their corresponding dimensions.

The transformation matrix T is in this case a vector t. The values of t and t+ are

t =
1

N
1T and t+ = 1 , (2.25)

which leads to he following relationship between the complete and reduced forms:

s =
1

N
1Ts and m = M1 . (2.26)

From (2.15) and (2.25), it also follows that

s = s1 . (2.27)

The single-group multicast system block diagram is shown in Fig. 2.6 and (2.16) can

be written as:

ŝ = DHms + Dz. (2.28)

Since there is no interference among the users of a same group, the SINR in (2.20)

becomes:

γn =
σ2

s |hnm|2
σ2

z

, for n = 1, . . . , N . (2.29)

The signal covariance matrix is expressed as Rs = σ2
sJ ∈ R

N×N in the complete form,

while in the reduced form it becomes a scalar Rs = σ2
d. The corresponding power
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Figure 2.6. System block diagram of the single-group multicast scenario.

constraints of the complete and reduced forms, given in (2.21) and (2.22), respectively,

may be rewritten as:

σ2
s tr(MHMJ) ≤ P , (2.30)

σ2
s ||m||2 ≤ P . (2.31)

And since there is only one multicast group, the receive filter in (2.19) can also be

expressed as:

D = diag(Hm)−1 . (2.32)

2.4.3 Multi-user unicast

In the multi-user unicast scenario, there are several unicast users sharing the same

resource. Descriptions of the multi-user unicast scenario can be found in works such

as [SSH04, JUN05]. In this case, the number of multicast groups K and the auxiliary

vectors g and b assume the following values:

K = N , (2.33a)

g ∈ Z
N | g = 1 , (2.33b)

b ∈ Z
N | b = [ 1, 2, . . . , N ]T . (2.33c)

For this configuration of the auxiliary vectors, the transformation matrix T is an iden-

tity, i.e., T = T+ = I. This results in the reduced form being equal to the complete

form, i.e., M′ = M and s′ = s. The system equation is therefore the same as (2.6) for

both forms. The same is valid for the system block diagram, which is identical to that

of Fig. 2.4.

From (2.33c) it can be seen that bn = n, for n = 1, . . . , N . By substituting this

expression in (2.20), the SINR can be rewritten as:

γn =
σ2

s |hnmn|2
N
∑

k=1, k 6=n

σ2
s |hnmk|2 + σ2

z

, for n = 1, . . . , N . (2.34)
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The signal covariance matrix is expressed as Rs = σ2
sI ∈ R

N×N , and the power con-

straint is given by

σ2
s tr(MHM) ≤ P . (2.35)

The receive filter becomes:

D = diag(diag(HM))−1 . (2.36)

2.4.4 Single-user unicast

The single-user unicast scenario is the simplest case, in which only one unicast user is

considered. In this case, the number of multicast groups K and the auxiliary vectors

g and b assume the following values:

K = N = 1 , (2.37a)

g ∈ Z | g = 1 , (2.37b)

b ∈ Z | b = 1 . (2.37c)

In this case, the transformation matrix T becomes a scalar t, with t = t+ = 1. For this

reason, similarly to the multi-user unicast case, the complete form is also identical to

the reduced form. The channel and modulation matrices are replaced by a row vector

h ∈ C
M and a column vector m ∈ C

M , respectively. The data symbol vector s, the

estimated symbol vector ŝ, the noise vector z, and the demodulation matrix D, are

reduced to the scalars s ∈ C, ŝ ∈ C, z ∈ C, and d ∈ C, respectively. The system block

diagram is shown in Fig. 2.7, and the system equation is rewritten as

ŝ = dhms + dz. (2.38)

Since there is only a single unicast user, the index n is dropped and the SINR is

γ =
σ2

s |hm|2
σ2

z

. (2.39)

The signal covariance matrix Rs becomes a scalar Rs = σ2
s ∈ R and the transmit power

constraint becomes

σ2
s ||m||2 ≤ P . (2.40)

The receive filter is given by

d = (hm)−1 . (2.41)
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Figure 2.7. System block diagram of the single-user unicast scenario.

Descriptions of the unicast system model can be found in works such as [PNG03,

KBB+05]. The general system model presented in this chapter is in accordance with

the aforementioned literature, since the single-user unicast model can be derived from

the general model as a particular case.

2.5 Extension for multi-antenna terminals

Multi-antenna terminals have been the focus of several recent studies, such as

[KBB+05], which investigate the performance of different MIMO techniques. The num-

ber of antenna elements at each terminal, however, is not expected to be very large,

due to the usually small dimensions of mobile devices [AH04]. Throughout this work,

only single-antenna terminals are considered, but it is shown in this section that the

extension of the model for multi-antenna terminals is straightforward.

Let Lt and Lr denote the total amount of transmit and receive antenna elements,

respectively. The number of antenna elements at each user terminal n is denoted by

L
(n)
r and the sum of all receive antenna elements results in the total amount Lr, i.e.,
∑N

n=1 L
(n)
r = Lr. The system equation is the same as (2.6), but the system variables

are defined as follows:

s = [s1 , . . . , sN ]T ∈ C
N , (2.42a)

M = [m1 , . . . , mN ] ∈ C
Lt×N , (2.42b)

H =
[

HT
1 , . . . , HT

N

]T ∈ C
Lr×Lt , (2.42c)

z =
[

zT
1 , . . . , zT

N

]T ∈ C
Lr , (2.42d)

D = diag(dT
1 , . . . , dT

N) ∈ C
N×Lr , (2.42e)

ŝ = [ŝ1 , . . . , ŝN ]T ∈ C
N , (2.42f)

where Hn ∈ C
L

(n)
r ×Lt , zn ∈ C

L
(n)
r , and dn ∈ C

L
(n)
r . This is equivalent to stacking

together the components associated to the group of receive antenna elements of each
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user terminal. Note that it has been assumed that the number of data streams is equal

to the number of users N , and not to the total number of receive antenna elements Lr.

The reduced representation of the system equation is obtained similarly to Section 2.3,

with the reduced data vector denoted by s′ ∈ C
K and the reduced modulation matrix

denoted by M′ ∈ C
Lt×K . The average SINR γn measured at each user terminal n is

given by

γn =
E{|dT

nHnm
′
bn

s′bn
|2}

E

{

K
∑

k=1, k 6=bn

|dT
nHnm

′
ks

′
k|2
}

+ E{|dT
nzn|2}

=

=
E{|s′bn

|2}|dT
nHnm

′
bn
|2

K
∑

k=1, k 6=bn

E{|s′k|2}|dT
nHnm

′
k|2 + E{zH

nd∗
nd

T
nzn}

=

=
σ2

s |dT
nHnm

′
bn
|2

K
∑

k=1, k 6=bn

σ2
s |dT

nHnm
′
k|2 + σ2

z dT
nd∗

n

, for n = 1, . . . , N .

(2.43)

Regarding the receive filter design, instead of a single scalar dn per user, there is

now a vector dn. A possible optimization criterion for determining D consists of

maximizing the received SNR. Assuming the constraint that, in the absence of noise

and interference, the estimated symbols are exactly the same as the original data

symbols, the optimization problem for each user n can be written as:

dn,opt = argmax
dn

γn

subject to: dT
nHnm

′
bn

= 1 .
(2.44)

Furthermore, if there are multiple streams per user and cooperation among the receive

antenna elements of a same user terminal is assumed, then the receive filter of user

n becomes a matrix Dn, and the global receive filter expression in (2.42e) becomes a

block diagonal matrix. For this case, different receive filters may be applied [JUN05],

such as the zero-forcing, the minimum mean square error, and the matched filter.

Nevertheless, the further investigation and design of different receive filters for multi-

antenna terminals is not within the scope of this thesis, and is left as a topic for further

studies.
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Chapter 3

Adaptive single-group multicast

beamforming

3.1 Introduction

The theme of this chapter is beamforming for the single-group multicast scenario.

The typical multicast beamforming problem of maximizing the worst-user SNR is for-

mulated in Section 3.2. This problem has been considered by several works, such

as [SL04, ZSV04, SDL06, HSJ+07], and different solutions have been proposed. A re-

view of the state-of-the-art and recent advances on multicast beamforming algorithms

is presented in Section 3.3. Nevertheless, algorithms based on other optimization cri-

teria known from the unicast case, such as the Matched Filter (MF), linear Zero-

Forcing (ZF) filter, linear Minimum Mean Square Error (MMSE) filter, Tomlinson-

Harashima Precoding (THP), and Switched Fixed Beams (SFB), are also of interest

for the multicast case. Only a few works have dealt with this issue in the multicast

context [SK06a, SK06b, SK06c]. In Section 3.4, these algorithms are formulated for

the multicast case. Additionally, a new suboptimal algorithm, called User-Selective

Matched Filter (USMF), is proposed for dealing with the problem of maximizing the

worst-user SNR. It is shown that it achieves good results, especially for scenarios with a

strong Line-Of-Sight (LOS). The performance of the algorithms is analyzed in Section

3.5 through simulations. Finally, the main conclusions are drawn in Section 3.6.

3.2 Problem formulation

The single-group multicast beamforming optimization problem can be specified in dif-

ferent ways, which depend on the cost function and constraints that are considered.

A reasonable optimization objective corresponds to the maximization of the minimum

SNR among the users of the multicast group [SL04,SDL06]. Such an approach promotes

fairness among the users and is adequate to the context of reliable multicast services.

Taking into account the single-group multicast system model presented in Section 2.4.2,

the optimization problem of determining the beamforming vector m ∈ C
L that maxi-

mizes the minimum SNR γn can be expressed as

mopt = argmax
m

min
n

γn , n = 1, . . . , N

subject to: σ2
s ||m||2 ≤ P ,

(3.1)



26 Chapter 3: Adaptive single-group multicast beamforming

where γn is given by

γn =
E{|hnms|2}

E{|zn|2}
=

σ2
s |hnm|2

σ2
z

. (3.2)

This optimization problem is a quadratically constrained quadratic programming prob-

lem [BV04]. It has been shown in [SDL06] that this problem is NP-hard (Nondetermin-

istic Polynomial time hard), i.e., it is at least as hard to solve as an NP (Non-Polynomial

time) problem [GJ79]. For this reason, lower-complexity suboptimal algorithms capa-

ble of providing solutions in an acceptable amount of time are required.

Another possible optimization problem corresponds to the minimization of the transmit

power subject to individual user quality constraints. It can be written as

mopt = argmin
m

||m||2 ,

subject to: γn ≥ γtgt n = 1, . . . , N ,
(3.3)

where γn is defined in (3.2) and γtgt corresponds to the target SNR required by the

users. It has been shown in [SDL06] that this problem is equivalent to the maximization

of the minimum SNR and is also NP-hard. Given a feasible γtgt, the solution can be

scaled according to the power constraint in order to reach the same solution as (3.1).

3.3 State-of-the-art

The single-group multicast beamforming problem has been first approached by Narula

et al. in [NLTW98]. The beamforming optimization aimed at maximizing the average

SNR perceived by the users within the multicast group. Lopez further developed

this algorithm by showing capacity bounds in [Lop02]. Nevertheless, the drawback of

maximizing the average SNR is that it can be rather unfair to the users. For this reason,

other works have proposed different optimization criteria, such as the maximization of

the minimum SNR. These works, which were introduced by Table 1.1 of Chapter 1,

are discussed in the following, according to their order of appearance in the literature.

Zhang et al. have proposed numerical methods for solving the problem of maximizing

the minimum SNR. In [ZSV02], transmit signature codes and receive filters are designed

for multicast Code Division Multiple Access (CDMA) systems. An Iterative Least

Distance Programming (ILDP) algorithm is proposed, as well as a lower complexity

solution based on Linear Programming (LP). In [ZSV04] these algorithms are extended

to the space-time and space-only cases, which take beamforming into account. An



3.3 State-of-the-art 27

Iterative Spatial Diagonalization (ISD) algorithm is proposed for the space-only case,

which has the restriction that the number of users has to be less than or equal to the

number of antennas at the base station. The ISD algorithm requires a Least Squares

with Inequality constraint (LSI) algorithm in order to calculate the beamforming vector

at each iteration, and the convergence is achieved by employing a steepest descent

algorithm.

Sun and Liu expressed the optimization problem of maximizing the minimum SNR in its

dual form, such as in (3.3), which corresponds to the minimization of the transmit power

subject to SNR constraints [SL04]. The problem was solved by employing Sequential

Quadratic Programming (SQP) methods, whose performace was shown to be much

superior to the maximization of the average SNR. Nevertheless, existing SQP solvers

are rather time-consuming, and they require the selection of good starting points in

order to avoid falling into local minima. For this reason, the performance of the

algorithm solved through SQP was compared in [SL04] to that of diversity techniques,

such as space-time coding, applied to the multicast case, which have lower complexity

and do not require channel knowledge at the transmitter. It was shown that there are

specific cases in which each of these techniques is most adequate. Diversity techniques

are particularly more efficient for reasonably large group sizes.

A more efficient solution to the maximization of the minimum SNR problem, as well

as its dual form, was proposed by Sidiropoulos et al. in [SD04, SDL06]. They have

demonstrated that the problem is NP-hard and have proposed a suboptimum solution

based on Semi-Definite Relaxation (SDR). The optimization problem is rewritten in an

equivalent form, in which the non-convex term is expressed by a rank-one constraint,

which is given by

Xopt = argmax
X

min
n

tr(XGn) , n = 1, . . . , N ,

subject to:











tr(X) = P/σ2
s

X � 0

rank(X) = 1

,
(3.4)

where X ∈ C
L×L is the new variable to be optimized, Gn = hH

nhn/σ
2
z ∈ C

L×L, and

X � 0 means that matrix X is semi-definite positive. The idea is to drop the rank-

one constraint and solve the problem through Semi-Definite Programming (SDP), for

which there exist very efficient numerical methods, such as those implemented by the

SeDuMi Matlab toolbox [Stu99]. If it happens that X has in fact rank one, then

the optimal solution has been achieved and is given by the principal eigenvector of X,

otherwise randomization methods are employed in order to provide an approximation of

the optimal solution. In [SDL06], some different randomization methods are proposed,
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such as randA, randB, and randC, which differ in how the candidate beamforming vector

solutions are obtained from matrix X. The randB method, for example, assumes that

each element l of vector m is given by ml =
√

Xl,l e
jθ, where θ is uniformly distributed

within [0, 2π].

More recently, some numerical optimization alternatives to the SDR approach have

been proposed by Hunger et al. in [HSJ+07]. They derived a successive beamforming-

filter computation algorithm, which is suitable for the case in which the number of users

is lower than the number of transmit antennas. For the opposite case, an iterative

SNR-increasing update algorithm is proposed, which iteratively improves the worst-

user SNR and has a complexity lower than that of SDR. In [HSJ+07] it was shown

that, for large group sizes, this iterative algorithm achieves better results than the

SeDuMi SDR approach with a randomization process limited to 100 random vectors.

None of these previous works, however, has approached the application of traditional

unicast beamforming techniques, such as the matched filter or zero-forcing, to the mul-

ticast case. In the next section, these traditional beamforming techniques, which have

different optimization criteria, are derived for the multicast context. Moreover, the de-

sign of efficient suboptimal algorithms for maximizing the minimum SNR for varied ra-

dio propagation scenarios is still a relevant issue. For this reason, a new low-complexity

algorithm is also proposed in the next section, which is shown to provide a good trade-

off between complexity and performance for both Non-Line-Of-Sight (NLOS) and Line-

Of-Sight (LOS) scenarios.

3.4 Beamforming algorithms

3.4.1 Matched filter

The Matched Filter (MF) optimization has been extensively studied for unicast sce-

narios. The initial focus was on the receive matched filter, which does not require

channel knowledge at the transmitter, but later the idea was extended to transmit pro-

cessing. In [EN93,BF99,CLM01] the prerake filter has been studied, which was shown

in [JUN01] to be equivalent to the transmit matched filter. In [Joh04, JUN05] it was

shown that both the receive and transmit filters are based on similar optimizations.

In this section, the matched filter expression is derived for the multicast single-group

scenario. The optimization problem can be written as

mMF = argmax
m

|E{sHy}|2
E{||s||2}E{||z||2} , subject to: σ2

s ||m||2 ≤ P . (3.5)



3.4 Beamforming algorithms 29

From Section 2.4.2 it is seen that the signal vector s is also given by s = s1. The

cost function of the optimization problem corresponds to an equivalent group SNR γeq,

which can be further expressed as

γeq =
|E{(s1)Hy}|2

E{||s1||2}E{||z||2} =
|E{s∗1T(Hms + z)}|2

(σ2
s1

T1)(Nσ2
z)

=
σ2

s

N2σ2
z

|1THm|2 . (3.6)

The problem can be solved through Lagrange optimization. The expression of the

Lagrangian function L is given by

L(m, µ) = − σ2
s

N2σ2
z

mHHH11THm + µ(σ2
s mHm− P ) , (3.7)

where µ ∈ R is a Lagrange multiplier. The Karush-Kuhn-Tucker (KKT) conditions for

optimality are

σ2
s ||m||2 ≤ P , µ ≥ 0 , µ(P − σ2

s mHm) = 0 ,
∂ L(m, µ)

∂ m
= 0 . (3.8)

From the last condition it follows that

∂ L(m, µ)

∂ m
= − σ2

s

N2σ2
z

HT11TH∗m∗ + µσ2
s m∗ = 0 ,

HH11THm = µN2σ2
z m .

(3.9)

In order to avoid the trivial solution, i.e., m = 0, and according to the second KKT

condition, then µ > 0. Additionally, the third KKT condition implies that the power

constraint is an equality, i.e., σ2
s mHm = P . Note that (3.9) corresponds to an eigen-

value problem of the form Am = λm, for which A = HH11TH and λ = µN2σ2
z . The

solution is given by a scaled version of the eigenvector associated to the largest eigen-

value of A. In this particular case, matrix A results from the product of two vectors,

having therefore rank 1. Assuming that A = vvH, where v = HH1, rank 1 matrices

present the following properties [Osn05]: A has at most one non-zero eigenvalue, this

eigenvalue is given by vHv, and v is the associated eigenvector. This leads to

m = βHH1 , (3.10)

where β ∈ R can be found by substituting (3.10) into the power constraint:

σ2
d ||βHH1||2 = P =⇒ β2 =

P

σ2
s 1THHH1

=⇒ β =

√

P

σ2
s tr(HHHJ)

. (3.11)

The final solution is given by

mMF =

√

P

σ2
s tr(HHHJ)

HH1 . (3.12)
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The expression of the receive filter, when substituting (3.12) into (2.32), becomes:

DMF =

√

σ2
s tr(HHHJ)

P
diag(HHH1)−1 . (3.13)

Another possible optimization procedure, which can also be considered a variant of the

matched filter in the multicast single-group context, has been investigated by previous

works [NLTW98,Lop02,SL04]. It presents a different cost function and aims at max-

imizing the average user SNR. The solution is given by the eigenvector associated to

the largest eigenvalue of HHH, and its performance is also analyzed later in Section

3.5. The filter expression is given by

mAVG =

√

P

σ2
s

eigv(HHH), (3.14)

where the eigv(·) function returns the unit-norm principal eigenvector of a matrix. The

receive filter can be written as

DAVG =

√

σ2
s

P
diag(H eigv(HHH))−1 . (3.15)

3.4.2 Linear zero-forcing filter

The transmit linear Zero-Forcing (ZF) filter has been originally proposed for unicast

scenarios with the purpose of removing interference among different data streams. Even

though there is no interference in the single-group multicast scenario, the zero-forcing

concept can still be applied. It has been shown in [Joh04] that the transmit zero-forcing

filter minimizes the Mean Square Error (MSE) subject to certain constraints. For a

multicast scenario, the MSE relates to the squared norm of the difference between the

estimated symbol vector ŝ and the actual data symbol vector s = s1. The multicast

zero-forcing optimization can be written as

mZF = argmin
m

E{||ŝ− s1||2} , subject to:

{

σ2
s ||m||2 ≤ P

ŝ
∣

∣

z=0
= s1

, (3.16)

where the second constraint corresponds to the zero-forcing constraint, which means

that in the absence of noise the estimated symbol vector ŝ must be equal to the actual

symbol vector s1. It is here assumed that the receive filter at each user is given by a

scalar β ∈ C, i.e., D = βI. The second constraint can be further expressed as

ŝ
∣

∣

z=0
= s1 =⇒ βHms = s1 =⇒ βHm = 1 . (3.17)
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The MSE cost function, substituting ŝ and taking into account the zero-forcing con-

straint, is given by

E{||βHms + z− s1||2} = E{||z||2} = Nσ2
z . (3.18)

The Lagrangian function can be expressed as

L(m, µ,ν) = Nσ2
z + µ(σ2

s mHm− P ) + ν
T(1− βHm) , (3.19)

where µ ∈ R and ν ∈ C
N are Lagrange multipliers. The KKT conditions are:

σ2
s ||m||2 ≤ P , βHm = 1 , µ ≥ 0 , µ(P − σ2

s mHm) = 0 ,
∂ L(m, µ,ν)

∂ m
= 0 .

(3.20)

From the last condition it follows that

∂ L(m, µ,ν)

∂ m
= µσ2

s m∗ − βHT
ν = 0 ,

m =
β

µσ2
s

HH
ν
∗ .

(3.21)

The Lagrange multiplier ν can be determined by substituting (3.21) into the zero-

forcing constraint:

βHm = 1 =⇒ β2

µσ2
s

HHH
ν
∗ = 1 =⇒ ν

∗ =
µσ2

s

β2
(HHH)−11 . (3.22)

Substituting (3.22) back into (3.21) leads to

m = β−1HH(HHH)−11 . (3.23)

From (3.21) and the third KKT condition it follows that µ > 0, since µ = 0 results

in an unfeasible beamforming vector. From the fourth KKT condition, a positive µ

implies that the power constraint has to be an equality. The parameter β can be found

by substituting (3.22) into the power constraint:

σ2
s ||β−1H(HHH)−11||2 = P =⇒ β =

√

σ2
s tr((HHH)−1J)

P
, (3.24)

where, in order to avoid multiple solutions, it has been assumed that β is positive real.

The zero-forcing solution is given by

mZF =

√

P

σ2
s tr((HHH)−1J)

HH(HHH)−11 . (3.25)

The substitution of (3.25) into the general receive filter expression (2.32) results in:

DZF =

√

σ2
s tr((HHH)−1J)

P
I , (3.26)

which confirms the assumption that the receive filter at each user is given by a scalar

β. Note that, due to the channel inversion in (3.25), this algorithm has the limitation

that the number of users cannot exceed the number of transmit antennas.
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3.4.3 Linear minimum mean square error filter

The transmit linear Minimum Mean Square Error (MMSE) filter, as the name already

indicates, aims at the minimization of the Mean Square Error (MSE). Different op-

timization procedures have been proposed for unicast scenarios. Some works have

proposed an unconstrained optimization, such as [VJ98,BPD00], which has the draw-

back of not always providing feasible results, i.e., requiring more power than there is

actually available. In [BF03], a constrained optimization with inequality constraint has

been presented in order to overcome this problem. A more general result called Wiener

filter, which considers the design of a scalar receive filter within the optimization proce-

dure, has been proposed in [JBU04,Joh04]. In this section, an optimization procedure

similar to the Wiener filter [JBU04,Joh04] is considered and the optimization problem

is solved through Lagrange optimization for the multicast case.

It is assumed that each receiver implements a scalar filter β ∈ C, and that β is part

of the optimization. The problem is similar to that of zero-forcing, but without the

zero-forcing constraint, and it is expressed as

{mMMSE, βMMSE} = argmin
{m, β}

E{||ŝ− s1||2} , subject to: σ2
s ||m||2 ≤ P , (3.27)

The MSE cost function can be further expressed as

E{||ŝ− s1||2} = E{||(βHm− 1)s + βz||2} (3.28)

= σ2
s(βHm− 1)H(βHm− 1) + |β|2Nσ2

z

= σ2
s |β|2mHHHHm− σ2

sβ
∗mHHH1− σ2

sβ1THm + Nσ2
s + |β|2Nσ2

z .

The Lagrangian function is given by

L(m, β, µ) = σ2
s |β|2mHHHHm− σ2

sβ
∗mHHH1− σ2

sβ1THm (3.29)

+Nσ2
s + |β|2Nσ2

z + µ(σ2
sm

Hm− P ) ,

where µ ∈ R is a Lagrange multiplier. The KKT conditions are the following:

σ2
s ||m||2 ≤ P , µ ≥ 0 , µ(P − σ2

s mHm) = 0 ,
∂ L(m, β, µ)

∂ m
= 0 ,

∂ L(m, β, µ)

∂ β
= 0 .

(3.30)

The partial derivatives with regard to m and β, respectively, are given by

∂ L(m, β, µ)

∂ m
= |β|2HHHm− β∗HH1 + µm = 0 , (3.31)

and
∂ L(m, β, µ)

∂ β
= σ2

sβ
∗mHHHHm− σ2

s1
THm + β∗Nσ2

z = 0 . (3.32)
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The expression for the beamforming vector m can be obtained from (3.31):

m = β−1

(

HHH +
µ

|β|2 I
)−1

HH1 (3.33)

The variable µ can be determined by first isolating β in (3.32)

β∗ =
σ2

s1
THm

σ2
s |Hm|2 + Nσ2

z

, (3.34)

and then substituting in (3.31) left-multiplied by mH

µmHm = β∗mHHH1− |β|2mHHHHm

=
σ2

s |1THm|2
σ2

s |Hm|2 + Nσ2
z

− σ4
s |1THm|2|Hm|2

(σ2
s |Hm|2 + Nσ2

z)
2

=
Nσ2

sσ
2
z |1THm|2

(σ2
s |Hm|2 + Nσ2

z)
2
.

(3.35)

From (3.35), it can be concluded that µ > 0. This implies, due to the third KKT

condition, that the power constraint is an equality. When substituting mHm = P/σ2
s

and β in (3.35), µ is given by

µ =
Nσ2

z

P
|β|2 . (3.36)

This leads to the following expression for the transmit filter

m = β−1

(

HHH +
Nσ2

z

P
I

)−1

HH1 , (3.37)

where β can be found through the power constraint

σ2
sm

Hm = σ2
sβ

−21TH

(

HHH +
Nσ2

z

P
I

)−1(

HHH +
Nσ2

z

P
I

)−1

HH1 = P =⇒

βMMSE =

√

√

√

√

√

σ2
s tr

(

H
(

HHH + Nσ2
z

P
I
)−2

HHJ

)

P
. (3.38)

In order to avoid multiple solutions, it has been assumed that β is positive real. The

MMSE transmit and receive filters, respectively, are given by:

mMMSE =

√

√

√

√

√

P

σ2
s tr

(

H
(

HHH + Nσ2
z

P
I
)−2

HHJ

)

(

HHH +
Nσ2

z

P
I

)−1

HH1 , (3.39)

DMMSE =

√

√

√

√

√

σ2
s tr

(

H
(

HHH + Nσ2
z

P
I
)−2

HHJ

)

P
I . (3.40)
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Note that, since the receive filter has been determined as part of the optimization

problem, the resulting receive filter expression in (3.40) is considered instead of the

general receive filter in (2.32). Another important remark is that, similar to the zero-

forcing algorithm, it is also required that the number of transmit antennas be greater

than or equal to the number of receive antennas.

3.4.4 Tomlinson-Harashima precoding

The Tomlinson-Harashima Precoding (THP) was originally proposed in [Tom71,HM72]

for mitigating intersymbol interference in the time domain. Later it was extended to

the spatial domain [FWLH02], with the purpose of suppressing the interference among

the multiple streams transmitted simultaneously by an antenna array. In this section,

the THP concept is first presented for the unicast case, and then a discussion on how

it can be applied to the single-group multicast case follows.

The THP algorithm introduces a feedback filter F ∈ C
N×N at the transmitter and

a modulo operator at both transmitter and receivers [WFVH04, Joh04]. The THP

transmission chain is depicted in Fig. 3.1. Its linear representation [Joh04] is also shown

in the figure, which is obtained by expressing the modulo operator as the addition of

auxiliary signals a ∈ C
N and â ∈ C

N at both transmitter and receiver, respectively.

MOD MOD+

+ +

+

+ +
s

s

v

v

ŝ
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Figure 3.1. THP transmission chain and its linear representation.

The system equation is given by

ŝeq = DHMv + Dz, (3.41a)

v = (I− F)−1seq, (3.41b)
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where v ∈ C
N is the data vector after the feedback filter. The vectors seq ∈ C

N and

ŝeq ∈ C
N correspond to the equivalent transmitted data vector and the estimated data

vector, respectively, and are given by

seq = s + a, (3.42a)

ŝeq = ŝ− â. (3.42b)

The optimization problem for the unicast zero-forcing THP filter is similar to that in

(3.16), with the additional constraint that F has to be spatially causal, i.e., it is a

lower triangular matrix with zero main diagonal [WFVH04, Joh04]. The solution of

the unicast optimization, according to [Joh04], is

MTHP =

√

P

tr(RvLd
−2)

HHLH,−1L−1
d , (3.43a)

F = I− LL−1
d , (3.43b)

where L ∈ C
N×N is a lower triangular matrix that comes from the Cholesky factor-

ization of the channel (HHH = LLH) [GL96], (·)X,Y corresponds to the sequential

application of matrix operators X and Y , Ld ∈ R
N×N is a diagonal matrix containing

the elements of the main diagonal of L, and Rv ∈ C
N×N is the covariance matrix of

the precoded data vector v. The receive filter, according to [Joh04], is given by

DTHP =

√

tr(RvLd
−2)

P
I . (3.44)

Note that it is usually assumed that the elements of vector v are uniformly distributed

within the area of the complex plane delimited by the τ parameter [Joh04], which is

a parameter employed by the modulo operator and that depends on the modulation

alphabet. This assumption leads to a variance σ2
v = τ 2/6. Assuming that the elements

of v are uncorrelated, then the covariance matrix is given by Rv = σ2
vI

In the case of multicast, even though the same symbol is transmitted to all users, the

data vector v contains different elements, due to the different channel profiles perceived

by each user. Therefore, the THP procedure presented here is the same for both unicast

and multicast. Similarly to zero-forcing, the THP algorithm is subject to the limitation

that the number of users cannot be larger than the number of transmit antennas.

3.4.5 Switched fixed beams

Besides the fully-adaptive algorithms presented in the previous sections, another option

for deploying antenna arrays in cellular networks is the use of Switched Fixed Beams
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(SFB). They represent a low-cost solution which can be implemented, among other

methods, through a Butler matrix [BL61]. The fixed set of weight vectors is designed

so that beams spanning the whole cell area are made available.

In the case of unicast users, the beam providing the highest SNR, which can be iden-

tified through feedback on the uplink, is selected. For multicast, however, all users

within the group need to be taken into account. The solution herein considered is to

activate all those beams which are currently being requested by the users. The result

is then a normalized linear combination of the selected weight vectors.

Let B represent the set of indices of the available beams and Bg ⊂ B the set of indices

corresponding to the beams requested by the group of users. The resulting beamform-

ing vector can be expressed as

mSFB =

√

√

√

√

P

σ2
s

∥

∥

∥

∥

∑

i∈Bg

wi

∥

∥

∥

∥

−2
∑

i∈Bg

wi , (3.45)

where wi ∈ C
M denotes the ith beamforming vector of the set of fixed beamformers.

The receive filter is given by

DSFB =

√

√

√

√

σ2
s

P

∥

∥

∥

∥

∑

i∈Bg

wi

∥

∥

∥

∥

2

diag



H
∑

i∈Bg

wi





−1

. (3.46)

Fig. 3.2 illustrates the concept of switched fixed beams. The example shows four beams

covering the area of a hexagonal cell sector. The users depicted with an X request the

two central beams, which are combined according to (3.45) in order to generate the

resulting beam. The right-hand side of Fig. 3.2 shows the antenna pattern of each

beam (dashed), as well as the combined pattern of the two activated beams (solid).
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Figure 3.2. Illustration of 4 fixed switched beams and beam selection.
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3.4.6 User-selective matched filter

In this section, a heuristic algorithm called User-Selective Matched Filter (USMF) is

proposed, which does not claim to provide the optimum for (3.1), but which improves

the performance of the matched filter in terms of fairness among the multicast users. By

fairness it is here meant that the users should perceive similar quality levels, i.e., max-

min fairness [SPC05]. The USMF aims at achieving a trade-off between the provision

of user fairness and the low complexity of the matched filter.

If it were assumed that there is a point-to-point connection for each user n, the ideal

solution in the sense of maximizing the SNR would be to employ a transmit matched

filter, i.e., m = hH
n . As it has been previously shown, the matched filter for the multicast

case is given by HH1. This results in a beamforming vector which corresponds to the

sum of all individual single-user matched filter vectors, which are stacked within matrix

HH. The idea of USMF is, instead of combining all of these vectors, to take a subset of

them, such that the resulting weight vector be the one that maximizes the worst-user

SNR. This can be done by introducing a diagonal selection matrix that postmultiplies

HH. The filter expression may be written as

mUSMF =

√

P

σ2
s tr(CTHHHCJ)

HHC1, (3.47)

where C ∈ Z
N×N is a non-zero diagonal matrix, with elements ci,i ∈ {0, 1}, for i =

1, . . . , N . Note that the matched filter of Section 3.4.1 corresponds to a special case of

USMF when C = I. The receive filter expression is given by

DUSMF =

√

σ2
s tr(CTHHHCJ)

P
diag(HHHC1)−1 . (3.48)

Since there are N users, and the diagonal elements of C are restricted to binary values,

there exists a total of 2N − 1 possible matrices. Due to this exponential complexity,

the exhaustive search procedure of testing each possible matrix and selecting the one

which maximizes the minimum SNR is only feasible for small group sizes. For larger

groups a more efficient methodology is required. Next, a correlation-based algorithm

for determining C is proposed.

Let ρi,j ∈ R denote the correlation between the vector channels of users i and j, which

is given by the normalized scalar product [FN96]:

ρi,j =
|hih

H
j |

||hi|| ||hj||
, (3.49)



38 Chapter 3: Adaptive single-group multicast beamforming

for which ρi,i = 1 and ρi,j = ρj,i. All pairs of channels are sorted in their decreasing

order of correlation and it is assumed initially that C = I. For each pair of channels

{i, j}, the elements {cii, cjj} are iteratively updated. They either maintain the same

values or one of them is set to zero. Among these possibilities, the one resulting in

the highest worst-user SNR within the multicast group is selected. The algorithm is

illustrated in Table 3.1, for which γmin(C) ∈ R represents the worst-user SNR:

γmin(C) = min(diag(HmmHHH)) =
1

||HHC1||2 min(diag(HHHCJCHHH)) . (3.50)

The number of times γmin(C) is calculated is reduced from 2N − 1 in case of the

exhaustive search to at most N2 −N + 1 in case of the correlation-based algorithm.

Table 3.1. Pseudo-code of the correlation-based USMF algorithm.

Initialize C⋆ ← I and γ⋆ ← γmin(I)

Calculate ρi,j ∀ i, j | i < j

Sort the pairs {i, j} in the decreasing order of ρi,j

For each pair {i, j} do:

Set γ(1) ← 0 and γ(2) ← 0

If c⋆
i,i 6= 0, set C(1) ← C⋆, c

(1)
i,i ← 0, and γ(1) ← γmin(C

(1))

If c⋆
j,j 6= 0, set C(2) ← C⋆, c

(2)
j,j ← 0, and γ(2) ← γmin(C

(2))

If max(γ(1), γ(2), γ⋆) = γ(1)

Set C⋆ ← C(1) and γ⋆ ← γ(1)

else if max(γ(1), γ(2), γ⋆) = γ(2)

Set C⋆ ← C(2) and γ⋆ ← γ(2)

else
C⋆ and γ⋆ remain unaltered

end if

end loop

Calculate mUSMF for C⋆ according to (3.47)

3.5 Performance and complexity analysis

3.5.1 Analysis assumptions

The scenario considered for the performance evaluation of the algorithms from Section

3.4 consists of a single cell equipped with an L-element uniform linear antenna array
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and N single antenna mobile terminals belonging to the same multicast group. The

cell area is assumed to be hexagonal and the base station is located at the cell corner,

representing a sector cell. The radio link between base station and mobile stations takes

into account the effect of fast fading as well as the distance-based path-loss attenuation.

The implemented fast fading model [FLFV00, PNG03] regards both Line-Of-Sight

(LOS) and Non-Line-Of-Sight (NLOS) components, and can be written as

H =
√

κ/(1 + κ)H +
√

1/(1 + κ) Ȟ, (3.51)

where κ ∈ R is the Rician factor which determines the ratio of deterministic-to-

scattered power, Ȟ ∈ C
N×L is composed of zero mean circularly symmetric complex

Gaussian random variables with unit variance, and H ∈ C
N×L models the LOS com-

ponent, which has each row hn given by

hn = [1, ej2πδcos(θ), . . . , ej2πδ(L−1)cos(θ)], (3.52)

where δ is the antenna spacing in wavelengths and θ is the angular direction of the

user, which is assumed to be uniformly distributed within [0, 2π/3] (base station at

the corner).

A simple distance-based path-loss model with exponent α = 3.5 is considered. The

model assumes that the distance rn between each user and the base station is much

larger than the antenna spacing. For this reason only one path-loss value is associated

to each radio link n. The channel matrix including the effects of path-loss is given by

HPL = diag(r)−α/2 H , (3.53)

where the vector r ∈ R
N contains the distances of all users to the base station.

The following two different user scenarios are considered:

• Scenario S1: The users are assumed to be at a same distance from the base

station. For this scenario, it has been chosen that r = 1, which leads to HPL = H.

This particular r was chosen in order to match the situation in which no path-

loss is considered. The analysis of this scenario is mainly motivated by the fact

that several other works found in the literature on multicast beamforming, such

as [ZSV04,SDL06,HSJ+07], also disregard the path-loss in their evaluations. In

the case of unicast, the usual argument for disregarding the path-loss is that

the different path-loss of the users could be compensated by power control. In

the case of multicast, however, this argument does not directly apply, since the

power assigned to the multicast transmission affects all users within the multicast

group. This scenario may correspond to a situation in which the users are close

to each other, such as in the case of localized multicast services.
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• Scenario S2: The users are assumed to be uniformly distributed over the whole

cell area. For this scenario, the area over which the users are distributed is a

hexagon with a distance of 1.5 between the base station at one corner and the

cell border at the other. This distance of 1.5 has been chosen in order to provide

results within the same range as those for scenario S1. This specific value leads,

in average, to a situation in which roughly half of the channel realizations present

users with rn < 1, and the other half with rn > 1. Note that the absolute value

of the cell border distance is not expected to have a significant impact on the

relative performance of the algorithms.

The following algorithms of Section 3.4 are considered in the simulations: the Matched

Filter (MF), the algorithm that maximizes the average SNR (MaxAvg), the Zero-

Forcing (ZF), the Minimum Mean Square Error (MMSE), the Tomlinson-Harashima

Precoding (THP), the Switched Fixed Beams (SFB), and the User-Selective Matched

Filter (USMF). Additionally, for comparison purposes, the algorithm based on Semi-

Definite Relaxation (SDR) [SD04,SDL06] is considered as well.

The THP algorithm is implemented taking into account the suboptimal ordering pro-

cedure proposed in [Joh04]. The SDR algorithm makes use of the SeDuMi optimization

library [Stu99] and considers a number of 1000 iterations for the randB randomization

procedure [SDL06], which is employed when the solution has rank higher than 1.

3.5.2 Bit error rate analysis

In this section, the uncoded BER of the beamforming algorithms is analyzed and com-

pared. The BER is an adequate measure for comparison, since it is strongly influenced

by the users in bad conditions, thus reflecting in the results which algorithms better

equilibrate the quality among the users. A four-antenna base station (L = 4) and a

multicast group composed of four users (N = 4) are considered. The simulations take

into account both QPSK and 16-QAM modulation schemes, and the constellation is

normalized such that the average symbol power is σ2
s = 1. The total transmit power is

assumed to be equal to the symbol power, i.e., P = σ2
s = 1. The τ parameter of THP,

presented in Section 3.4.4, is set to 2
√

2 for QPSK and 8/
√

10 for 16-QAM [Joh04].

For each channel realization i, S = 100 symbols are transmitted and the average bit

error rate BERi is calculated as follows:

BERi =
E

NS log2(Mo)
, (3.54)
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where E denotes the number of bit errors and Mo the modulation order. Note that,

even though only S symbols are transmitted, a total of NS symbols are received by

the users, since this is a multicast scenario. The numerator of (3.54) corresponds to

the total number of bits erroneously detected by the receivers, while the denominator

represents the total number of received bits, i.e., the total number of received symbols

NS times the number of bits per symbol, which is given by log2(Mo). In order to

achieve statistically accurate results, the total number of channel realizations is ad-

justed individually for each simulated point, such that at least 100 errors are measured

in average by each simulation [JBS00].

Figs. 3.3 and 3.4 show the average BER performance of the different algorithms for

a QPSK modulation scheme in NLOS and LOS scenarios, respectively. Scenario S1

is considered, i.e., the users are assumed to be at the same distance from the base

station. The BER is depicted as a function of the Es/N0, which represents the ratio of

the symbol power to the spectral noise density.

In Fig. 3.3, the worst performance is achieved by the ZF algorithm, which is due to

the fact that it spends a considerable amount of energy trying to suppress interference

among the data streams, which in the case of multicast is not necessary. The MMSE

algorithm, as expected, outperforms ZF, since it introduces a regularization factor for

avoiding the inversion of ill-conditioned matrices. The THP algorithm, similarly to the

unicast case in [Joh04], presents better results for high Es/N0 values, outperforming

both ZF and MMSE, which is mainly due to its non-linearity. It should be noticed

that these three algorithms – ZF, MMSE, and THP – achieve the worst performance

in comparison to the other algorithms due to the channel inversion implemented by

them. The SFB algorithm comes next, but it does not perform particularly well, since

it employs fixed beams in a scenario without LOS component. Both the MF and Max-

Avg algorithms outperform SFB, since they are not constrained to fixed beamforming

vectors. The USMF algorithm presents a significant performance gain over the previ-

ous algorithms, requiring roughly 10dB less Eb/N0 than MaxAvg for providing a BER

of 10−3, which is due to the fact that it was specifically designed for the multicast case.

The SDR algorithm outperforms USMF by approximately 3dB for a BER of 10−3, but

at the cost of a much higher computational complexity, as it will be shown later by the

complexity analysis.

When we compare the results obtained for an NLOS scenario in Fig. 3.3 to those

obtained for a purely LOS situation in Fig. 3.4, it becomes clear that the channel

profile has a considerable impact on the performance of the algorithms.

In Fig. 3.4, the worst performance is achieved by the MaxAvg algorithm. Its poor

performance is due to the fact that the objective of the algorithm is to maximize the
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average and not the minimum SNR. Differently from the NLOS channel, the eigen-

decomposition of HHH for the LOS channel results in a large ratio of the largest to

smallest singular values (ill-conditioned matrix), which means that more energy is con-

centrated on the principal eigenmode. This has a positive effect on the average, but

leads to a more uneven energy distribution within the group, i.e., some users achieve

very high SNR at the expense of others with very low quality. The THP and ZF

algorithms come next, with ZF presenting slightly lower bit error rates. The similar

shapes of ZF and THP, as well as the degradation of THP with regard to ZF, are a

consequence of the inversion of ill-conditioned channel matrices. The further ordering

of the algorithms, in terms of increasing performance, is given by: SFB, MF, MMSE,

USMF, and SDR. Some explanations are given in the following.

The USMF gets much closer to SDR, with an Es/N0 difference of less than 1dB, and

the MF and SFB have their performance greatly improved in the presence of LOS. The

increased spatial correlation of this scenario has a positive effect on USMF, which can

be explained due to the fact that it increases the probability that the rows of HH be

correlated, resulting in more zero entries within C of (3.47), which brings it closer to

the single-user beamforming case. Analogously, this higher correlation has a positive

effect on MF as well, which was previously shown in Section 3.4.6 to be a particular case

of USMF. For SFB the reason is similar, with an increased probability that less beams

be requested by the users, and therefore allowing more energy to be concentrated in

certain directions. The performance of MMSE in the LOS scenario is much better than

in the NLOS scenario, approaching that of USMF and surpassing both the MF and SFB

algorithms. It is known that the regularization factor introduced by MMSE improves

the energy efficiency in comparison to ZF, and in the LOS scenario this regularization

has a larger impact, which is due to the ill-conditioned HHH matrix. For this reason,

ZF ends up requiring a large amount of energy to diagonalize the channel, whereas the

MMSE regularization results in a much better conditioned matrix. It should be noticed

that channel inversion methods, such as MMSE and ZF, provide roughly the same

quality to all users, which is not the case of the MF and SFB algorithms. Usually this

balancing effect comes at the cost of a high energy inefficiency, as shown for the NLOS

case. For the LOS case, however, the regularization of MMSE largely compensates this

inefficiency, and therefore it outperforms both MF and SFB.

It should be mentioned that the results obtained with the THP algorithm for the LOS

scenario correspond to an ideal case, in which the precoding matrix is normalized at

each symbol period, instead of on a per-frame basis. The reason for this procedure is

that the assumption that the precoded THP symbols are uniformly distributed over

the area of the complex plane bounded by the τ parameter is no longer valid for the

LOS scenario. More details on this subject are provided in Appendix A.1.
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Figure 3.3. BER performance of multicast beamforming: QPSK, NLOS, and S1.
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Figure 3.4. BER performance of multicast beamforming: QPSK, LOS, and S1.
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Figs. 3.5 and 3.6 present, respectively, the BER results for a 16-QAM modulation

scheme in both NLOS and LOS scenarios. Since a larger amount of bits is transmitted

per symbol, this modulation scheme becomes more efficient than QPSK only for larger

SNR values. For this reason the curves are all shifted to the right. Nevertheless, the

relative performance among the algorithms is practically the same as that of the QPSK

modulation scheme, for both NLOS and LOS scenarios.

In order to assess the performance impact of having users with difference path-gains,

scenario S2 has been simulated considering QPSK modulation and the NLOS channel

model. The results are shown in Fig. 3.7, and it is seen that a relative behavior among

the algorithms similar to scenario S1 is achieved. The main differences compared to

S1 are: the THP algorithm presents the third best performance for large SNR values;

the MF and MaxAvg algorithms achieve approximately the same results, with their

curves overlapping in Fig. 3.7, and are both outperformed by the SFB algorithm. The

first difference is due to the fact that the modulo-based non-linear THP algorithm can

deal better with large differences among the channel gains of the different users than

the other linear algorithms, with the exception of those which are specifically designed

for multicast. Regarding the overlapping of MF and MaxAvg, it happens since MF

is based on the sum of the individual channel vectors of the users, and when there

is a large difference in terms of channel gains, practically only the strongest channels

will be representative, similarly to the MaxAvg, which concentrates the energy on the

dominant eigenvector. The SFB algorithm, which uses predefined weight vectors, is

not so strongly biased towards the dominant users, therefore achieving better results

than MF and MaxAvg.

Table 3.2 presents a summary of the algorithms’ performance for the considered modu-

lation schemes and channel profiles for scenario S1. The results correspond to the Es/N0

required in order to achieve an uncoded BER of 10−3. It should be noticed that, in the

case of other system configurations, e.g. considering the use of coding schemes, dif-

ferent BER requirements, among others, the difference among the algorithms may be

reduced. Moreover, the BER performance is not the only decisive factor for choosing

the most adequate algorithm. The computational complexity, which will be discussed

later in this chapter, must also be taken into account.
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Figure 3.5. BER performance of multicast beamforming: 16-QAM, NLOS, and S1.
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Figure 3.6. BER performance of multicast beamforming: 16-QAM, LOS, and S1.
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Figure 3.7. BER performance of multicast beamforming: QPSK, NLOS, and S2.

Table 3.2. Es/N0 in dB required in order to provide an uncoded BER of 10−3.

QPSK NLOS QPSK LOS 16-QAM NLOS 16-QAM LOS

MF 23.2 9.2 29.0 15.8

MaxAvg 22.2 > 35.0 27.9 > 35.0

ZF 32.3 15.5 > 35.0 21.4

MMSE 28.3 8.5 > 35.0 15.8

THP 24.8 17.2 28.7 22.1

SFB 24.8 11.0 30.8 17.6

USMF 12.1 7.8 18.6 14.5

SDR 9.2 7.2 15.8 14.0

3.5.3 Worst-user SNR analysis

In this section, the impact of the multicast group size on the worst-user SNR of the

algorithms is analyzed. This investigation is motivated by the fact that, in practice, the

multicast group may be composed of a number N of users much larger than the number

L of transmit antennas at the base station, differently from the previous section, in

which it was assumed that N = L. Since the ZF, MMSE, and THP algorithms have the
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limitation that the number of users cannot exceed the number of transmit antennas,

they are not considered within this section. The following algorithms are taken into

account: MF, MaxAvg, SFB, USMF, and SDR.

The investigation considers an Es/N0 of 10dB, 4 and 8 transmit antennas at the base

station, and scenario S1. The fixed 10dB value was chosen so as to represent a mid-

range Es/N0, which might often be verified in practice. The results are presented in

terms of the worst-user SNR. For each channel realization, the SNR is measured at

each user terminal of the multicast group, and the minimum among these measures is

taken as the worst-user SNR metric, which is then averaged over the number of channel

realizations. Since only SNR values are considered, and no bit errors are accounted for,

the results are valid irrespective of the modulation scheme. It should be noticed that,

due to the array gain, the SNR measured at the user terminals may achieve values

above 10dB. More specifically, array gains in the order of 6dB and 9dB are expected

for the 4 and 8-antenna scenarios, respectively.

Figs. 3.8 and 3.9 depict the average worst-user SNR as a function of the number

of users within the multicast group for the NLOS and LOS scenarios, respectively,

considering different algorithms and a 4-antenna array. For all algorithms it can be

seen that the more users there are within a group, the lower the SNR that can be

guaranteed. Moreover, the relative behavior among the algorithms, for both NLOS

and LOS scenarios, is the same as that verified through the BER evaluation, which

will be discussed in the following.

In Fig. 3.8, it can be seen that SDR presents the best results. The USMF algorithm

is the one that best approaches the SDR performance. The other three algorithms,

the MaxAvg, MF, and SFB, present worse results, with the average worst-user SNR

falling bellow 0dB for large group sizes. The simulation results for the LOS scenario,

which are shown in Fig. 3.9, indicate that the absolute performance of all algorithms

improves, with the exception of MaxAvg, which suffers a considerable performance

degradation. The reasons for the relative performance of the algorithms are the same

as those discussed in the previous section.

The performance of USMF within the LOS scenario gets closer to that of SDR as the

number of users increases. For large group sizes, USMF even outperforms SDR. Note

that the SDR algorithm only achieves the optimal solution for the cases in which a rank

1 matrix is achieved at the end of the numerical optimization. Since the probability

of achieving rank 1 matrices decreases for large group sizes, the SDR performance

is degraded, relying on randomization methods for improving the obtained solution.

It should also be mentioned that, according to [KSL07], it is always possible to find
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Figure 3.8. Average worst-user SNR for NLOS, L = 4, and Es/N0=10dB.
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Figure 3.9. Average worst-user SNR for LOS, L = 4, and Es/N0=10dB.
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a rank 1 solution for LOS channels (also known as Vandermonde channels), but the

SDR method does not necessarily deliver it. The rank 1 solution can be achieved by

postprocessing through spectral factorization, which increases the complexity and has

not been considered in the simulations.

Figs. 3.10 and 3.11 also present results for the NLOS and LOS scenarios, respectively,

but now considering an 8-antenna array. The same conclusions as those for the 4-

antenna case can be drawn from these results. It can also be noticed that the relative

performance of USMF with regard to SDR is improved. The reason for this is that

the same amount of randomizations was considered by the SDR algorithm for both 4-

antenna and 8-antenna cases. As shown in [SDL06], however, more transmit antennas

require more randomizations in order to better approximate the optimal solution. The

number of randomizations was kept constant for comparison purposes, but it can of

course be changed in order to improve the performance of SDR at the cost of increased

complexity.



50 Chapter 3: Adaptive single-group multicast beamforming

2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12

14

16

18

MF

MaxAvg

SFB

USMF

SDR

Group size (number of users)

A
v
er

a
g
e

w
o
rs

t-
u
se

r
S
N

R
in

d
B

Figure 3.10. Average worst-user SNR for NLOS, L = 8, and Es/N0=10dB.
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Figure 3.11. Average worst-user SNR for LOS, L = 8, and Es/N0=10dB.
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3.5.4 Remarks on complexity

In order to complement the performance analysis, this section takes into account the

complexity of the different beamforming algorithms. With these results at hand, it

is possible to identify which algorithms present the best trade-off between complexity

and performance.

The complexity of an algorithm is here measured in terms of the required number of

complex multiplications. Divisions and square roots have the same complexity as a

multiplication, when they are efficiently implemented using Newton’s method [BV04],

and therefore are counted as such. Additions and subtractions are not taken into

account and it is assumed that the algorithms are implemented as efficiently as possible.

Repeated operations do not increase the complexity, i.e., when the same computation

is employed at several points within the algorithm, its computational cost is computed

only once, since its result can be stored in memory and reused when necessary.

Table 3.3 shows the complexity of all algorithms in terms of the number of complex mul-

tiplications, as well as the order of complexity according to the big O notation [GL96].

The algorithms are sorted in the table according to their increased order of complexity.

Note that, in the complexity analysis of the THP algorithm, the suboptimal ordering

procedure of [Joh04] is taken into account. An upper bound for the complexity order

of SDR is given in [SDL06] in terms of the number of arithmetic operations, but since

the comparison in Table 3.3 only takes into account the number of multiplications, a

factor of 1/2 is introduced in order to roughly approximate the number of multiplica-

tions. For more details on the complexity of mathematical functions and operations,

see Appendix A.2.

Table 3.3. Computational complexity of the beamforming algorithms.

Alg. Number of complex multiplications Complexity

order

MF NL + 2L + 2 O(NL)

SFB NL2 + NL + 2L + 2 O(NL2)

MaxAvg 1
2
NL2 + 1

2
NL + L +O(L3) O(1

2
NL2 + L3)

ZF 1
2
NL2 + L3 + L2 + 3

2
NL + 2L + 2 O(1

2
NL2 + L3)

MMSE 1
2
NL2 + L3 + L2 + 3

2
NL + 2L + 2 O(1

2
NL2 + L3)

USMF 2N3L + N3 − 1
2
N2L + 3

2
N2 + 1

2
NL− 5

2
N + 2L + 2 O(2N3L)

THP 3N4 + 1
6
N3 + N2L + 3

2
N2 + 2NL + 13

3
N + 2 +O(1

3
N3) O(3N4)

SDR - O(1
2
(N +L2)3.5)
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The MF and SFB algorithms are the ones presenting the lowest complexity, whereas

SDR is the most complex one. The MaxAvg, ZF, and MMSE algorithms have the

same complexity order, higher than SFB but still lower than USMF. The THP has a

complexity comparable to that of USMF.

3.6 Conclusions

In this chapter, the single-group multicast problem has been investigated. The fol-

lowing algorithms, known from the unicast case, have been formulated for the single-

group multicast case: Matched Filter (MF), linear Zero-Forcing (ZF), linear Minimum

Mean Square Error (MMSE), Tomlinson-Harashima Precoding (THP), and Switched

Fixed Beams (SFB). Additionally, an algorithm specifically designed for the multicast

case, called User-Selective Matched Filter (USMF) has been proposed. These newly

proposed algorithms have been extensively analyzed in terms of performance and com-

plexity, for both Non-Line-Of-Sight (NLOS) and Line-Of-Sight (LOS) scenarios, and

their relative behavior has been explained. The main conclusions may be summarized

as follows:

• For the NLOS scenario, the USMF algorithm presents a much better performance

than the other proposed algorithms, reasonably approaching the performance of

the more complex Semi-Definite Relaxation (SDR) algorithm.

• The LOS scenario has a rather positive impact on several of the proposed algo-

rithms, such as the USMF, MMSE, MF, and SFB. The USMF gets much closer

to SDR, and the other mentioned algorithms also follow closely.

• With regard to the impact of the group size on the worst-user SNR performance,

it has been shown that the USMF algorithm presents the best trade-off between

complexity and performance. For large group sizes, the other proposed algorithms

have their performance significantly degraded, while some of them actually have

a group size limitation, such as the ZF, MMSE, and THP algorithms.
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Chapter 4

Adaptive multi-group multicast

beamforming

4.1 Introduction

In this chapter, the theme of multi-group multicast beamforming is approached. It is

an extension of the single-group beamforming, discussed in the previous chapter, to

the case in which multiple multicast groups share the same radio resource. The moti-

vation is to exploit the spatial dimension provided by the multiple antennas in order

to provide an efficient utilization of the radio resources. The challenge is to design

efficient algorithms capable of suppressing the inter-group interference, while at the

same time providing the best possible quality to the users of the different multicast

groups. The optimization problem is formulated in Section 4.2. Some solutions to this

problem have been proposed in works such as [KSL05, KSL07, GS05a, GS06], which

are briefly discussed in Section 4.3. It is shown in this chapter that algorithms origi-

nally designed for the multi-user unicast scenario can be extended for the multi-group

multicast case. Formulations of both linear and non-linear algorithms for the multi-

group multicast case are proposed in Sections 4.4 and 4.5, respectively. The linear

algorithms are the Matched Filter (MF), linear Zero-Forcing (ZF), linear Minimum

Mean Square Error (MMSE), and SINR Balancing (SB), while the non-linear ones are

based on Tomlinson-Harashima Precoding (THP) and Vector Precoding (VP). Addi-

tionally, modified versions of these algorithms – referred to as Multicast-Aware (MA)

algorithms – are proposed in order to improve the performance of the multicast ser-

vices. An analysis of the performance and complexity of the algorithms is presented in

Section 4.6. The results demonstrate that the linear MA algorithms achieve significant

performance gains with regard to the original ones, but the same is not true for the

non-linear MA algorithms, which is due to a number of reasons which are discussed

throughout the chapter. Finally, the main conclusions are summarized in Section 4.7.

4.2 Problem formulation

In a multi-group multicast scenario, differently from the single-group case, there are

several data streams being transmitted simultaneously on the same radio resource,
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each targeted at a different multicast group. Due to this simultaneous transmission

of different streams at the same time and at the same resource, each receiver sees the

streams that are intended for other groups as interference. This inter-group interference

has a significant impact on the solution of the optimization problem.

The single-group optimization problem specified in (3.1) determines a single beamform-

ing vector. Now, since this is a multi-group case, a beamforming vector is considered

to be associated to each data stream. These beamforming vectors can be concate-

nated into matrix M′ ∈ C
L×K . The optimization problem for determining the beam-

forming matrix M′ that maximizes the worst-user Signal-to-Interference plus Noise

Ratio (SINR) can be written as

M′
opt = argmax

M′

min
n

γn , n = 1, . . . , N

subject to: σ2
s tr(M′HM′) ≤ P ,

(4.1)

where γn is given by

γn =
σ2

s |hnm
′
bn
|2

K
∑

k=1, k 6=bn

σ2
s |hnm

′
k|2 + σ2

z

, for n = 1, . . . , N . (4.2)

Another possible optimization problem corresponds to the minimization of the transmit

power subject to individual user quality constraints. It can be written as

M′
opt = argmin

M′

tr(M′HM′) ,

subject to: γn ≥ γtgt n = 1, . . . , N ,
(4.3)

where γn is defined in (4.2) and γtgt corresponds to the desired target SINR.

Both optimization problems correspond to quadratically constrained quadratic pro-

gramming problems [BV04]. The second problem, expressed in (4.3), was claimed to

be NP-hard by Karipidis et al. in [KSL05]. The equivalence of both problems for

the single-group beamforming case indicates that the first problem, expressed in (4.1),

might be NP-hard as well.

Regarding the receive processing optimization, the procedure described in Section 2.3

that results in (2.19) is taken into account by all algorithms, unless otherwise explicitly

stated by the algorithm description. The receive filter D ∈ C
N×N is given by

D = diag(h1m
′
b1

, . . . ,hNm′
bN

)−1 , (4.4)

which can be alternatively expressed as

D = diag((HM′ ⊙T+)1)−1 , (4.5)
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where the symbol ⊙ denotes the entry-wise matrix product, also known as Hadamard

or Schur product, H ∈ C
N×L is the channel matrix, and T+ ∈ R

N×K is the right

pseudoinverse of the transformation matrix defined in (2.9).

4.3 State-of-the-art

In this section, a review of the state-of-the-art in multi-group multicast beamforming

is presented, which complements the short review presented by Table 1.1 of Chapter 1.

The multi-group multicast beamforming problem has first been discussed by Lopez

in [Lop02], where the use of null space projection algorithms has been suggested for

eliminating the interference among the data streams of different groups. After the

null space projections, an equivalent channel matrix HM is achieved, whose non-zero

elements are grouped into “array processing subblocks”. These subblocks determine

the type of transmit processing technique to be employed, which can be: single-group

multicast beamforming, single-user unicast beamforming, or non-linear precoding for

a group of unicast users. This approach has served as inspiration for the algorithms

which will be presented in Sections 4.4.2.2 and 4.5.3.

A precoding strategy based on Dirty Paper Coding (DPC) [Cos83] for the multi-group

multicast scenario has been proposed by Khisti in [Khi04]. This precoding strategy,

however, is based on sum rate maximization, which is not adequate to the optimization

problems discussed in Section 4.2.

In [KSL05], Karipidis et al. proposed a method based on Semi-Definite Relaxation

(SDR) for the multi-group multicast optimization problem of minimizing the transmit

power subject to SINR constraints expressed in (4.3). It corresponds to an extension of

the single-group multicast beamforming algorithm in [SD04, SDL06], and is based on

the multi-user unicast case presented in [BO99]. Similar to the single-group multicast

case, the rank 1 relaxation allows the problem to be solved efficiently through semi-

definite optimization methods. If the obtained solution has rank 1, then it corresponds

to the optimal solution, otherwise randomization techniques need to be employed in

order to improve the solution [SD04, KSL05]. The problem is that, differently from

the single-group case, it is no longer possible to simply scale the generated randomized

beamforming vectors, due to the inter-group interference. In [KSL05], the problem of

converting each candidate vector into a feasible solution is called “multi-group power

control” and is expressed as a Linear Programming (LP) problem, which can also

be solved through semi-definite optimization. This additional optimization problem,
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however, increases the complexity of the algorithm. The specific case of multi-group

multicast beamforming for Vandermonde channel matrices is approached in [KSL06,

KSL07], where it is shown that the relaxed problem always leads to rank 1 matrices,

meaning that the optimal solution is always achieved for this case.

Gao and Schubert proposed in [GS05a] another solution to problem (4.3) than that

of [KSL05]. The difference with regard to [KSL05] is that DPC is employed and a

block-triangular channel is taken into account. Such a channel structure allows a

group-by-group algorithm, since the interference from previous groups is known. The

beamforming vectors are successively determined for each group by employing single-

group beamforming based on SDR [SD04]. The power allocated to each beamforming

vector is also determined successively through a simple algorithm.

In [GS06], the same SDR approach of [KSL05] is employed to solve problem (4.3),

but instead of solving the “multi-group power control” through semi-definite program-

ming, an iterative power allocation method based on worst-case interference functions

is proposed.

With regard to the problem of maximizing the worst-user SINR expressed in (4.1),

differently from the single-group multicast case, its solution cannot be directly obtained

by scaling the solution of (4.3). It has been shown in [GS06] and [KSL07], however,

that it can be solved through a bisection method. The idea is to specify an SINR

interval within which the optimal solution must lie, and to determine the solution of

problem (4.3) when considering the middle point of the interval as the target SINR.

The interval is then successively bisected, based on whether the required amount of

power Preq exceeds the transmit power constraint P or not. For each interval middle

point, the corresponding problem (4.3) is solved. The bisection proceeds until a desired

precision is reached with regard to |Preq − P |.

Another method for determining a solution to (4.1), which is based on the alternating

optimization procedure of [SB04], has been proposed in [GS06]. It employs an iter-

ative power allocation algorithm, which determines the power allocation vector and

the maximum achievable worst-user SINR, given a fixed set of beamforming vectors.

Additionally, given a certain SINR target, the SDR approach of [GS05a] is used to de-

termine the beamforming vectors. The power allocation and beamforming algorithms

are alternately executed, until the worst-user SINR stops increasing.

The extension of multi-user unicast beamforming techniques to the multi-group mul-

ticast case, however, has not been investigated by previous works. For this reason,
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formulations of linear and non-linear beamforming algorithms for the multi-group mul-

ticast scenario are proposed in the next sections. Additionally, it is shown that these

algorithms can be enhanced, in general, by introducing modifications that aim at im-

proving the performance of multicast services. These enhanced algorithms are further

referred to as Multicast-Aware (MA) algorithms.

4.4 Linear algorithms

4.4.1 Matched filter

The derivation of the Matched Filter (MF) for the multi-group multicast scenario is

based on the optimization problem for the multi-user unicast case presented in [Joh04].

It aims at maximizing the SNR perceived at each terminal, without taking the inter-

group interference into account. The unicast problem for determining the modulation

matrix M can be expressed as

MMF = argmax
M

|E{sHy}|2
E{||s||2}E{||z||2} , subject to: E{||Ms||2} ≤ P . (4.6)

The multicast optimization can be obtained by substituting the modulation matrix M

and symbol vector s by the reduced modulation matrix M′ and reduced symbol vector

s′, respectively. Recalling from (2.15) that s = T+s′, the multicast problem is given by

M′
MF = argmax

M′

|E{(T+s′)Hy}|2
E{||T+s′||2}E{||z||2} , subject to: E{||M′s′||2} ≤ P . (4.7)

The cost function of the optimization problem corresponds to an equivalent group

SINR, denoted by γeq, which can be further expressed as

γeq =
|E{s′HT+,T(HM′s′ + z)}|2
E{s′HT+,TT+s′}E{zHz} =

|tr(HM′R′
sT

+,T)|2
tr(T+R′

sT
+,T)tr(Rz)

, (4.8)

where Rz = E{zzH} and (·)X,Y corresponds to the sequential application of matrix

operators X and Y . Note that, differently from the single-group multicast case, the

optimization now involves the determination of a matrix, instead of a vector, which

is due to the multiple data streams. As a matter of fact, the cost function in (4.8)

resembles rather that of the multi-user unicast case in [Joh04] than that of the single-

group multicast case. The application of the same Lagrange optimization procedure

as in [Joh04] leads to the following solution:

M′
MF =

√

P

σ2
s tr(HHHT+T+,T)

HHT+ . (4.9)
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4.4.2 Zero-forcing based algorithms

4.4.2.1 Zero-forcing

The Zero-Forcing (ZF) optimization problem for the multi-group scenario, assuming

that s = T+s′, can be written as

M′
ZF = E{||ŝ−T+s′||2} , subject to:

{

E{||M′s′||2} ≤ P

ŝ
∣

∣

z=0
= T+s′

, (4.10)

where the second constraint corresponds to the zero-forcing constraint, which means

that in the absence of noise the estimated symbol vector ŝ must be equal to the complete

symbol vector with repeated entries T+s′. Similarly to the single-group case, it is here

assumed that the receive filter for each user is given by a scalar β ∈ C, i.e., D = βI.

The second constraint can be further expressed as

ŝ
∣

∣

z=0
= T+s′ =⇒ βHM′s′ = T+s′ =⇒ βHM′ = T+ . (4.11)

The MSE cost function, substituting ŝ and taking into account the zero-forcing con-

straint, is given by

E{||βHM′s′ + z−T+s′||2} = E{||z||2} = tr(Rz) . (4.12)

The Lagrangian function can be expressed as

L(M′, µ,Λ) = tr(Rz) + µ(tr(M′HM′R′
s)− P ) + tr(Λ(T+ − βHM′)) , (4.13)

where µ ∈ R and Λ ∈ C
K×N are Lagrange multipliers. Note that the Lagrange

multipliers associated to the zero-forcing constraint are now grouped within a matrix,

instead of within a vector as in the single-group case. Again, the optimization procedure

employed in [Joh04] for the multi-user unicast case can be employed to obtain the

solution to the multi-group multicast problem, which is given by

M′
ZF =

√

P

σ2
s tr((HHH)−1T+T+,T)

HH(HHH)−1T+ . (4.14)

For this algorithm, the receive filter expression in (4.4) can be simplified as

DZF =

√

σ2
s tr((HHH)−1T+T+,T)

P
I . (4.15)
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4.4.2.2 Multicast-aware zero-forcing

The algorithm presented in the previous section corresponds to a direct method of im-

plementing the zero-forcing filter based on channel inversion. Another possible method

is to make use of null-space projections [SH02,SSH04] in order to eliminate the inter-

ference. In [SH02, SSH04], a null-space method called Block Diagonalization (BD) is

proposed for the MIMO multi-user scenario. The idea of BD is to suppress only the

interference among streams of different users, i.e., no energy is spent on mitigating

the interference among the streams of a same user. The assumption is that this re-

maining intra-user interference can be suppressed by implementing receive processing

techniques at each multi-antenna user terminal.

The MIMO multi-user scenario is to some extent analogous to the multi-group multicast

scenario. For the latter, it is only necessary to suppress the interference among different

groups. The users belonging to the same group do not require interference cancellation.

Actually, since they expect the same data stream, no further interference suppression

is required at the receiver side. In this section, an algorithm based on null-space

projections, which has been first introduced by the author of this thesis in [SK06b], is

proposed for the multi-group multicast scenario. This algorithm will be referred to as

multicast-aware zero-forcing (MA-ZF).

It is assumed that M′ ∈ C
L×K and m′

k ∈ C
L denote, respectively, the complete beam-

forming matrix and the beamforming vector of the kth multicast group.

Let Hk ∈ C
gk×L and H̃k ∈ C

(N−gk)×L denote, respectively, the channel matrix of all

users belonging to group k and all users not belonging to group k. The latter can be

written as

H̃k = [HT
1 , . . . , HT

k−1 , HT
k+1 , . . . , HT

K ]T . (4.16)

The channel H̃k can be decomposed using Singular Value Decomposition (SVD) as

follows:

H̃k = ŨkS̃k[ Ṽ
(1)
k , Ṽ

(0)
k ]H , (4.17)

where Ũk ∈ C
(N−gk)×(N−gk) is a unitary matrix, S̃k ∈ R

(N−gk)×L is a diagonal matrix,

Ṽ
(1)
k ∈ C

L×r̃k and Ṽ
(0)
k ∈ C

L×(L−r̃k) contain the right singular vectors of H̃k, with r̃k

denoting the rank of matrix H̃k. Matrix Ṽ
(0)
k constitutes an orthogonal basis for the

null space of H̃k. Due to this property, Ṽ
(0)
k can be used for specifying a beamforming

vector that cancels the interference from the other groups of users. If L− r̃k = 1, then

Ṽ
(0)
k can be used directly as the beamforming vector, otherwise, if L − r̃k > 1, then

there are some degrees of freedom for determining a suitable beamforming vector. Note

that r̃k = N − gk, when assuming that matrix H has full row rank.
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The multiplication of the channel matrix Hj by Ṽ
(0)
k , for all j 6= k, results in a matrix

of zeros 0 ∈ R
gj×(L−r̃k). The product HkṼ

(0)
k , on the other hand, can be seen as

an equivalent channel matrix H
(eq)
k ∈ C

gk×(L−r̃k) after the null space projection. When

multiplying Hk by Ṽ
(0)
k it is assured that the interference from the data streams of other

users will be totally suppressed. For this reason, each multicast group can processed

individually, i.e., the single-group beamforming algorithms of Section 3.4 can be applied

to the equivalent channel H
(eq)
k of each group k. Let m

(eq)
k ∈ C

(L−r̃k) denote the

equivalent beamforming vector obtained after applying single-group beamforming to

H
(eq)
k . The resulting beamforming vector for group k is then given by

m′
k = Ṽ

(0)
k m

(eq)
k , (4.18)

and the beamforming matrix M′ is

M′ = [ Ṽ
(0)
1 m

(eq)
1 , . . . , Ṽ

(0)
K m

(eq)
K ] . (4.19)

In order to better illustrate how the MA-ZF algorithm works, consider the parameters

of the exemplary scenario of Section 2.3: N = 4, K = 3, g = [1, 1, 2]T, b = [1, 2, 3, 3]T.

Assuming that the channel matrix is full rank, the elements required for calculating

M′ have the following dimensions:

H1 ∈ C
1×4 , H̃1 ∈ C

3×4 , Ṽ
(0)
1 ∈ C

4×1 , m
(eq)
1 ∈ C

1×1 ,

H2 ∈ C
1×4 , H̃2 ∈ C

3×4 , Ṽ
(0)
2 ∈ C

4×1 , m
(eq)
2 ∈ C

1×1 ,

H3 ∈ C
2×4 , H̃3 ∈ C

2×4 , Ṽ
(0)
3 ∈ C

4×2 , m
(eq)
3 ∈ C

2×1 ,

(4.20)

and the product HM′ is given by

HM′ =







H1Ṽ
(0)
1 m

(eq)
1 H1Ṽ

(0)
2 m

(eq)
2 H1Ṽ

(0)
3 m

(eq)
3

H2Ṽ
(0)
1 m

(eq)
1 H2Ṽ

(0)
2 m

(eq)
2 H2Ṽ

(0)
3 m

(eq)
3

H3Ṽ
(0)
1 m

(eq)
1 H3Ṽ

(0)
2 m

(eq)
2 H3Ṽ

(0)
3 m

(eq)
3






=









x 0 0
0 x 0
0 0 x
0 0 x









, (4.21)

where x indicates non-zero values.

Another aspect concerning the MA-ZF algorithm is that, differently from the ZF filter,

the received power is not balanced among the users. In the case of ZF, all users receive

the same power, which is due to the channel inversion step. The approach based

on null-space projections, however, does not make any such guarantees regarding the

receive power. For this reason, it is necessary to perform power loading on matrix M′.

In [SSH04], the power loading is done according to the waterfilling algorithm [PF05],

which aims at maximizing the sum throughput. A more fair power loading, which
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balances the received power among the users, is considered here instead. The power

loading matrix Γ ∈ R
K×K is given by

Γ = diag(min(|H1Ṽ
(0)
1 m

(eq)
1 |) , . . . , min(|HKṼ

(0)
K m

(eq)
K |))−1 , (4.22)

where the modulo operator | · | is assumed to be applied element-wise. This power

loading ensures that the same amount of power is given to the worst user of each

multicast group. Additionally, the matrix M′Γ still has to be normalized by a scalar

factor β ∈ R in order to satisfy the transmit power constraint, which is given by

β =

√

P

σ2
s tr(M′HM′Γ2)

. (4.23)

The beamforming solution for the MA-ZF algorithm can finally be summarized as

M′
MA-ZF = βM′Γ , (4.24)

where β, M′, and Γ are defined, respectively, in (4.23), (4.19), and (4.22).

4.4.3 Minimum mean square error based algorithms

4.4.3.1 Minimum mean square error

The Minimum Mean Square Error (MMSE) optimization problem for the multi-group

scenario, assuming that s = T+s′ and that each receiver implements a scalar filter

β ∈ C, can be written as

{M′
MMSE, βMMSE} = argmin

{M′, β}

E{||ŝ−T+s′||2} , subject to: E{||M′s′||2} ≤ P , (4.25)

The MSE cost function can be further expressed as

E{||ŝ−T+s′||2} = E{||(βHM′ −T+)s′ + βz||2} (4.26)

= E{s′H(βHM′ −T+)H(βHM′ −T+)s′ + |β|2zHz}
= tr(|β|2M′HHHHM′R′

s − 2Re(βT+,THM′R′
s) + T+,TT+R′

s + |β|2Rz) .

The Lagrangian function is given by

L(m, β, µ) = E{||ŝ−T+s′||2}+ µ(tr(M′HM′R′
s)− P ) , (4.27)

where µ ∈ R is a Lagrange multiplier. Similarly to the MF and ZF algorithms, the

optimization procedure employed in [Joh04] for the multi-user unicast case can be
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employed to obtain the solution to the multi-group multicast problem, which is given

by

M′
MMSE =

√

√

√

√

√

P

σ2
s tr

(

H
(

HHH + Nσ2
z

P
I
)−2

HHT+T+,T

)

(

HHH +
Nσ2

z

P
I

)−1

HHT+ ,

(4.28)

with the receive filter expressed as

DMMSE =

√

√

√

√

√

σ2
s tr

(

H
(

HHH + Nσ2
z

P
I
)−2

HHT+T+,T

)

P
I . (4.29)

4.4.3.2 Multicast-aware minimum mean square error

In this section, the MMSE algorithm is enhanced for the multi-group multicast scenario.

The proposed multicast-aware MMSE (MA-MMSE) algorithm is based on the same

method of null-space projections described in Section 4.4.2.2. The difference is that,

instead of making the projections with regard to the original channel, an equivalent

regularized channel is taken into account. The null space projections totally suppress

the inter-group interference of the equivalent channel. However, since it is not equal

to the original channel, a similar effect as that of the MMSE algorithm is achieved, in

which there appears a residual inter-group interference. Moreover, since the projections

are done on a regularized channel, the drawbacks of an ill-conditioned matrix are

avoided.

Let H(R) ∈ C
N×N denote the regularized channel. It is defined as

H(R) = HHH +
Nσ2

z

P
I , (4.30)

where the same regularization factor as that of the MMSE algorithm [Joh04] is con-

sidered. Matrix H̃k ∈ C
(N−gk)×N and its SVD are given by

H̃k = [H
(R),T
1 , . . . , H

(R),T
k−1 , H

(R),T
k+1 , . . . , H

(R),T
K ]T , (4.31a)

H̃k = ŨkS̃k[ Ṽ
(1)
k , Ṽ

(0)
k ]H , (4.31b)

where H
(R)
k ∈ C

gk×N , Ũk ∈ C
(N−gk)×(N−gk), S̃k ∈ R

(N−gk)×N , Ṽ
(1)
k ∈ C

N×r̃k , Ṽ
(0)
k ∈

C
N×(N−r̃k), and r̃k denotes the rank of matrix H̃k.

The multicast beamforming optimization, which can be implemented according to any

of the algorithms in Section 3.4, is done for each group considering the equivalent
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channel after the null-space projection H
(eq)
k = H

(R)
k Ṽ

(0)
k ∈ C

gk×(N−r̃k), and resulting

in the beamforming vector m
(eq)
k ∈ C

(N−r̃k).

The beamforming matrix M′
MA-MMSE ∈ C

L×K of the MA-MMSE algorithm can finally

be written as

M′
MA-MMSE = βHHM′Γ (4.32)

with

β =

√

P

σ2
s tr(M′HHHHM′Γ2)

, (4.33a)

M′ = [ Ṽ
(0)
1 m

(eq)
1 , . . . , Ṽ

(0)
K m

(eq)
K ] , (4.33b)

Γ = diag(min(|H(R)
1 Ṽ

(0)
1 m

(eq)
1 |) , . . . , min(|H(R)

K Ṽ
(0)
K m

(eq)
K |))−1 , (4.33c)

where β ∈ R, M′ ∈ C
N×K , and Γ ∈ R

K×K .

4.4.4 SINR balancing based algorithms

4.4.4.1 SINR balancing

Different solutions to the SINR Balancing (SB) problem have been proposed in the

literature for the multi-user unicast scenario, such as in [BO99, SB04]. In [BO99],

the problem of minimizing the transmit power subject to the condition that the users

achieve a certain SINR target, is written as a semidefinite optimization problem, which

can be solved through efficient semidefinite programming techniques. In [SB04], a

different methodology for solving this problem, as well as the problem of maximizing

the worst-user SINR subject to a transmit power constraint, is proposed. It takes

advantage of the uplink/downlink duality and consists of an alternating optimization

procedure, which adjusts both the unit-norm beamformers and the power allocation

among the streams, converging to the optimal solution after only a few iterations. In

this section, the alternate optimization algorithm is briefly reviewed and applied to the

multi-group multicast case.

Let U ∈ C
L×N denote the unit-norm beamforming matrix, whose nth column un ∈ C

L

is given by

un =
mn

||mn||
, (4.34)

and let p ∈ R
N denote the power allocation vector, whose nth element pn ∈ R is

pn = σ2
s ||mn||2 . (4.35)
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From (4.34) and (4.35), it also follows that

mn =
√

(pn/σ2
s)un . (4.36)

The multi-group unicast SINR balancing optimization problem can be written as

{pSB,USB} = argmax
{p,U}

min
n

γn , for n = 1, . . . , N ,

subject to: 1Tp ≤ P .
(4.37)

where the unicast SINR γn is given by

γn =
pnu

H
nGnun

N
∑

i=1, i6=n

piu
H
i Gnui + 1

, (4.38)

and Gn = (hH
nhn)/σ2

z ∈ C
L×L denotes the normalized Gram matrix of the channel.

Note that, when this SINR calculation is applied to the multicast case, pessimistic

values are achieved, since even multicast users belonging to the same group are assumed

to be interferers.

With the power and beamforming vectors being regarded separately, according to (4.34)

and (4.35), the optimization problem is separated into two parts: power allocation and

unit-norm beamforming determination. These two parts are explained in the following,

and then the alternating optimization procedure is described.

The power allocation vector p, given a fixed unit-norm beamforming matrix U, can be

determined by employing centralized power control [Zan92]. Let S ∈ R
N×N denote a

diagonal matrix corresponding to the signal part of the transmission, and Ψ ∈ R
N×N

the interference part. The elements of S and Ψ are given by

Si,j =

{

uH
i Giui, i = j

0, i 6= j
, Ψi,j =

{

0, i = j

uH
j Giuj, i 6= j

. (4.39)

Assuming that all users achieve the same maximal SINR value γmax, the following

equation holds

Sp = γmax(Ψp + 1) =⇒ γ−1
maxp = S−1Ψp + S−11 . (4.40)

In order to achieve the maximal SINR, the power vector needs to employ the total

available power P , i.e., 1Tp = P . When left-multiplying (4.40) by 1T it becomes

γ−1
max = P−11TS−1Ψp + P−11TS−11 . (4.41)
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According to [SB04], an eigensystem can be formed based on (4.40) and (4.41):

Υpext = γ−1
maxpext , (4.42)

where pext = [pT 1 ]T ∈ R
N+1 is an extended power vector, and Υ ∈ R

(N+1)×(N+1) is

an extended coupling matrix given by

Υ =

[

S−1Ψ S−11

P−11TS−1Ψ P−11TS−1

]

. (4.43)

The solution of the eigensystem leads to the optimal power vector, which is given by

the first N components of the principal eigenvector of Υ [SB04].

Next, the unit-norm beamforming optimization problem is discussed. Given a fixed

power allocation, it has been shown in [SB04] for the unicast case that, due to the

uplink/downlink duality, the optimal unit-norm beamformers can be obtained by per-

forming maximization of the uplink SINR of each user independently. The optimization

problem is expressed as

un,opt = argmax
un

uH
nGnun

uH
nQnun

, subject to: ||un||2 = 1 ,

with Qn =
N
∑

i=1, i6=n

(qiGi) + I ,

(4.44)

where q ∈ R
N represents the uplink power allocation vector, which may be obtained

as the first N components of the principal eigenvector of the extended uplink coupling

matrix Υ(ul) ∈ R
(N+1)×(N+1) given by

Υ(ul) =

[

S−1ΨT S−11

P−11TS−1ΨT P−11TS−1

]

. (4.45)

The solution of (4.44) corresponds to the dominant generalized eigenvector of the pair

(Gn,Qn).

Concluding the section, the alternating optimization algorithm is now explained. The

algorithm consists of the alternating execution of the power allocation and unit-norm

beamforming procedures, such as described in [SB04]. The dominant eigenvalue λmax of

the power allocation problem monotonically decreases after each iteration, so that the

stop criterion is defined based on λmax reaching a certain precision ǫ, i.e., λ
(i−1)
max −λ

(i)
max <

ǫ, where (·)(i) indicates the ith algorithm iteration. Given an arbitrary initial uplink

power vector q(0), the following steps are repeated until the desired precision is reached:

• Calculate U(i) given the previous vector q(i−1),

• Calculate q(i) given matrix U(i).
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At the end, the downlink power allocation p is calculated for the final matrix U. The

resulting multi-user unicast beamforming matrix MSB ∈ C
L×N is given by

MSB = U diag(p)1/2 . (4.46)

When extending this procedure to the multi-group multicast case, there is an issue

with the power constraint in (2.21) that needs to be clarified. In order to separate

the beamforming matrix into the power and unit-norm beamforming parts, (4.35) has

considered the following assumption:

E{||Ms||2} =
N
∑

n=1

σ2
sm

H
nmn , (4.47)

which is only valid if the symbols within s are uncorrelated, which is not true for

the multi-group multicast case, since there are repeated symbols within s. For this

reason, an additional power normalization must be performed once after all iterations

are concluded. The reduced-form beamforming matrix M′
SB ∈ C

L×K is finally given by

M′
SB = β U diag(p)1/2 T+ , (4.48)

with β ∈ R defined as

β =

√

P

σ2
s tr(diag(p)1/2 UHU diag(p)1/2 T+T+,T)

. (4.49)

4.4.4.2 Multicast-aware SINR balancing

In this section, the SINR balancing (SB) algorithm of the previous section is enhanced

with the purpose of improving the performance of the multicast users. The proposed

multicast-aware SB (MA-SB) algorithm, which has been introduced by the author of

this thesis in [SK07b], is based on alternating optimization. MA-SB differs from al-

gorithms proposed by previous works [GS06, KSL07] in that it does not require the

application of the bisection method. The algorithms in [GS06,KSL07] actually solve

the problem of minimizing the transmit power subject to SINR constraints, and the

bisection method is required for iteratively adjusting the SINR target until the maxi-

mum worst-user SINR is achieved. MA-SB directly aims at maximizing the minimum

SINR, and therefore it does not require the bisection method.

The optimization problem of determining the optimal reduced-form beamforming ma-

trix M′
MA-SB ∈ C

L×K of MA-SB can be written as

M′
MA−SB = argmax

M′

min
n

γn , for n = 1, . . . , N ,

subject to: σ2
s tr(M′HM′) ≤ P .

(4.50)
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with the SINR γn defined as

γn =
σ2

s m′H
bn

Gnm
′
bn

K
∑

k=1, k 6=bn

σ2
s m′H

k Gnm
′
k + 1

, (4.51)

and Gn = (hH
nhn)/σ2

z ∈ C
L×L denoting the normalized Gram matrix of the channel.

Note that (4.50) and (4.51) express the same optimization problem of maximizing the

minimum SINR as (4.1) and (4.2), respectively.

Even though the optimization problem is expressed in the reduced form, the proposed

MA-SB algorithm is derived based on the complete form of the multi-group multicast

scenario. This is necessary in order to make it possible to find a solution based on

alternating optimization, similarly to the SB algorithm of the previous section. For

this reason, the same notation is considered for the power vector p ∈ R
N and unit-norm

beamforming vectors un ∈ C
L as defined in (4.35) and (4.34), respectively.

The MA-SB algorithm is described in the following. First, the power allocation proce-

dure for a fixed matrix U is presented, followed by the unit-norm beamforming given

a fixed power allocation p. These two procedures are alternately executed in an it-

erative fashion. After all iterations are concluded, a single power redistribution step

is introduced in order to balance the SINRs among the unicast users and multicast

groups.

In order to express the set of equations that determines the downlink power assignment

given a fixed matrix U, it is initially assumed that all users are unicast and that they

achieve the same maximum SINR γmax. Let S ∈ C
N×N denote a diagonal matrix

corresponding to the signal part of the transmission, and Ψ ∈ C
N×N the interference

part. For the multi-user unicast case, the elements of S and Ψ are given in (4.39), and

the power vector is determined based on the solution of the eigensystem expressed in

(4.42).

For the multi-group multicast case, however, this procedure cannot be directly applied

in the reduced form, since the power allocation would have to be done for each group,

and not for each user. This results in a number of equations larger than the number of

variables, i.e., there are still N SINR values to balance but only K < N power elements

to adjust. In this case it is not always possible to guarantee that all users achieve the

same SINR and the system cannot be solved as an eigenvalue problem.

In order to simplify the procedure and allow the multi-group multicast power allocation

to be also expressed as an eigensystem, it is here assumed that the power allocation
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can be done user-wise, i.e., vector p contains N elements, and the elements of matrices

S and Ψ are now defined as:

Si,j =











(

N
∑

n=1, bn=bi

uH
n

)

Gi

(

N
∑

n=1, bn=bi

un

)

, i = j

0, i 6= j

, (4.52a)

Ψi,j =

{

0, bi = bj

uH
j Giuj, bi 6= bj

. (4.52b)

Matrices S and Ψ are chosen so that when they are substituted in the SINR expression

in (4.40), the actual SINR perceived by the users is approximated, while still allowing

the system to be solved as an eigenvalue problem. The solution corresponds to the

principal eigenvector of the extended coupling matrix, defined in (4.43), but considering

the new S and Ψ matrices of (4.52). Assuming that

m′
bn

=
N
∑

i=1, bi=bn

mi =
N
∑

i=1, bi=bn

√

pi/σ2
s ui , (4.53)

the actual and approximate complete-form SINR expressions are, respectively:

γn =

(

N
∑

i=1, bi=bn

√
piu

H
i

)

Gn

(

N
∑

i=1, bi=bn

√
piui

)

K
∑

k=1, k 6=bn

(

N
∑

i=1, bi=k

√
piu

H
i

)

Gn

(

N
∑

i=1, bi=k

√
piui

)

+ 1

, (4.54a)

γn ≃
pn

(

N
∑

i=1, bi=bn

uH
i

)

Gn

(

N
∑

i=1, bi=bn

ui

)

K
∑

k=1, k 6=bn

(

N
∑

i=1, bi=k

piu
H
i Gnui

)

+ 1

. (4.54b)

The approximation of the signal part in (4.54b) corresponds to considering the power

of only the nth user and disregarding the power of the other users belonging to the same

group. With regard to the interference part, it is a worst-case approximation which

considers all interferers as unicast users, instead of taking into account the equivalent

group beamforming vectors.

Regarding the determination of the unit-norm beamformers, a similar approach to

that of [SB04], which has been presented in the previous section, is considered. The

optimization problem for the unit-norm beamformer of user n is written as

un,opt = argmax
un

uH
nGnun

uH
nQnun

, subject to: ||un||2 = 1 ,

with Qn =
N
∑

i=1, bi 6=bn

qiGi + I ,

(4.55)
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where q ∈ R
N represents the uplink power allocation vector, which may be determined

as the principal eigenvector of the extended uplink coupling matrix defined in (4.45),

with the S and Ψ matrices given in (4.52a) and (4.52b), respectively. The solution of

(4.55) corresponds to the dominant generalized eigenvector of the pair (Gn,Qn). The

difference with regard to the multi-user unicast case lies in the definition of matrix Qn,

which has been modified in order to avoid interference within a same multicast group.

The MA-SB algorithm consists of the alternating optimization of the power allocation

and unit-norm beamforming procedures, such as described in [SB04]. Similarly to the

previous section, the stop criterion is based on the principal eigenvalue of the extended

coupling matrix. Given an arbitrary initial uplink power vector q(0), the following steps

are repeated until the desired precision is reached:

• Calculate U(i) given the previous vector q(i−1),

• Calculate q(i) given matrix U(i).

At the end, the downlink power allocation p is calculated for the final matrix U. The

resulting complete-form modulation matrix is given by

MMA-SB = β U diag(p)1/2 , (4.56)

where β ∈ R is a normalization factor related to the total transmit power constraint,

which is given by

β =

√

P

tr(diag(p)1/2 UHU diag(p)1/2 Rs)
. (4.57)

Due to the SINR approximation considered for the power allocation procedure, the

SINR balancing is not achieved for all users. In fact, it is perceived that the SINR

of the unicast users reaches a certain balanced level, and that the average SINR of

the users of the multicast group also approaches this level, but not each individual

multicast user.

In order to improve the worst-user performance, a power redistribution among the

multicast and unicast users is proposed here. This procedure is a further refinement

of the algorithm, and is performed only a single time after the iterative algorithm has

stopped. Let p′ ∈ R
K represent the group power allocation vector and u′

k ∈ C
L the

unit-norm beamforming vector of group k, such that p′k = ||m′
k||2, u′

k = m′
k/||m′

k||,
and U′ = [u′

1, . . . ,u
′
K ] ∈ C

L×K . The users with lowest SINR are selected to represent

each group, such that G′
k = Gn | γn=minγk

, where γ ∈ R
N corresponds to the SINR
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vector that results from the application of MMA-SB, and the vector γk ∈ R
gk contains

the SINR of the users belonging to group k.

The unit-norm beamforming vectors u′
k calculated at the last iteration of the alternat-

ing optimization are maintained, and the power vector p′ is recalculated by solving the

system:
{

γ−1
max p′ = S′−1Ψ′p′ + S′−11

1Tp′ = P
, (4.58)

for which the elements of S′ ∈ R
K×K and Ψ′ ∈ R

K×K are given by

S ′
i,i =

{

u′H
i G′

iu
′
i, i = j

0, i 6= j
, Ψ ′

i,j =

{

0, i = j

u′H
j G′

iu
′
j, i 6= j

. (4.59)

The solution corresponds to the first K elements of the principal eigenvector of the

extended coupling matrix Υ′ ∈ R
(K+1)×(K+1) given by

Υ′ =

[

S′−1Ψ′ S′−11

P−11TS′−1Ψ′ P−11TS′−1

]

. (4.60)

The obtained power re-allocation vector is denoted p′
PR. It is applied to the unit-

norm beamforming, without the need of further power normalization, such that the

reduced-form modulation matrix is given by

M′
MA-SB = U′ diag(p′

PR)1/2 . (4.61)

4.5 Non-linear algorithms

4.5.1 Tomlinson-Harashima precoding based algorithms

4.5.1.1 Tomlinson-Harashima precoding

In this section, the Tomlinson-Harashima Precoding (THP) algorithm is described in

the context of the multi-group multicast scenario. In Section 3.4.4, the zero-forcing

THP algorithm has already been presented in the context of a single-group multicast

scenario. The filter parameters have been considered in the complete form, and it

has been discussed that, due to the non-linear precoding of the symbols through the

modulo operator located within the feedback filter F ∈ C
N×N shown in Fig. 3.1, the

precoded symbol vector v ∈ C
N in (3.41b) does not have repeated entries. For this
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reason, the multi-user unicast definition of THP in [WFVH04, Joh04] can be directly

applied to both single-group and multi-group multicast scenarios.

The expressions for the modulation matrix M ∈ C
L×N , the feedback filter F ∈ C

N×N ,

and the receive filter D ∈ C
N×N , respectively, are given in (3.43a), (3.43b), and (3.44),

which are repeated here for the sake of completeness

MTHP =

√

P

tr(RvLd
−2)

HHLH,−1L−1
d , (4.62a)

FTHP = I− LL−1
d , (4.62b)

DTHP =

√

tr(RvLd
−2)

P
I , (4.62c)

where L ∈ C
N×N is a lower triangular matrix that comes from the Cholesky factoriza-

tion of the channel (HHH = LLH) [GL96], Ld ∈ R
N×N is a diagonal matrix containing

the elements of the main diagonal of L, and Rv ∈ C
N×N is the covariance matrix of

the precoded data vector v. For more details, see Section 3.4.4.

4.5.1.2 Multicast-aware Tomlinson-Harashima precoding

In this section, multicast awareness is taken into account by the THP algorithm with

the purpose of improving the performance of the multicast users. The proposed al-

gorithm is referred to a multicast-aware THP (MA-THP). Considering the reduced

form of the multi-group multicast scenario, the THP transmission chain comprises a

linear transmission filter M′ ∈ C
L×K as well as a feedback filter F′ ∈ C

K×K . The

former is responsible for eliminating part of the interference, such that the equiva-

lent channel matrix HM′ is lower triangular. In the case of multi-user unicast, this

triangularization can be achieved by employing the QR decomposition or Cholesky fac-

torization [WFVH04, Joh04]. For the multi-group multicast scenario, however, these

methods do not apply, since HM′ is no longer a square matrix. Nevertheless, it is

still possible to eliminate the interference by performing null space projections, such as

in [SK06b,LK05,SSH04]. The MA-THP algorithm proposed in this section, which has

been introduced by the author of this thesis in [SK07a], is based on these null space

projections.

Let hn denote the nth row of matrix H and m′
k the kth column of matrix M′. The

following constraints must be satisfied:

hnm
′
k = 0 ∀n, k | bn < k , (4.63)
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where n ∈ {1, . . . , N} and k ∈ {1, . . . , K}. This can be achieved by projecting each

group beamformer m′
k onto the null space associated to the channels of the users of

previous groups.

The feedback matrix F′ ∈ C
K×K is responsible for successively cancelling the remaining

interference. In order to fulfill the causality constraint [Joh04], F′ must be lower

triangular with the main diagonal composed of zeros. Let matrix P′ ∈ C
K×K be

defined as P′ = (I − F′)−1, then (I − F′) as well as P′ are also lower triangular but

with the main diagonal composed of ones.

The effect that is expected from the transmission processing is that the interference

among multicast groups be totally cancelled, therefore P′ must also satisfy

HM′P′ = diagb(HM′) , (4.64)

where the diagb(·) operator returns a matrix Y = diagb(X), whose elements satisfy

the following expression:

(Y)n,k =

{

(X)n,k , for bn = k

0 , otherwise
. (4.65)

Alternatively, by employing the element-wise product with regard to the transformation

matrix T+, (4.64) can also be written as

HM′P′ = HM′ ⊙T+ . (4.66)

One problem that arises from the fact that P′ has dimension K lower than N is that it

is not always possible to find a lower triangular matrix P′ satisfying (4.64). In order to

obtain a feasible solution it is necessary to impose additional constraints on matrix M′.

These constraints can be obtained by writing (4.64) with M′ already satisfying (4.63)

and P′ as a lower triangular matrix with unit diagonal. For example, considering the

exemplary scenario with two unicast users and one multicast group composed of two

users, (4.64) could be written as









h1m
′
1 0 0

h2m
′
1 h2m

′
2 0

h3m
′
1 h3m

′
2 h3m

′
3

h4m
′
1 h4m

′
2 h4m

′
3













1 0 0
P ′

2,1 1 0
P ′

3,1 P ′
3,2 1



 =









h1m
′
1 0 0

0 h2m
′
2 0

0 0 h3m
′
3

0 0 h4m
′
3









, (4.67)

which only has a feasible solution if

h3m
′
1

h3m
′
3

=
h4m

′
1

h4m
′
3

and
h3m

′
2

h3m
′
3

=
h4m

′
2

h4m
′
3

. (4.68)
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Let Hk ∈ C
gk×L denote the channel matrix of group k, and h(k,i) ∈ C

1×L the channel

of the ith user within group k. When generalizing the problem, the following set of

constraints needs to be taken into account for each group k:

h(k,1)m
′
1

h(k,1)m
′
k

=
h(k,2)m

′
1

h(k,2)m
′
k

= . . . =
h(k,gk)m

′
1

h(k,gk)m
′
k

,

h(k,1)m
′
2

h(k,1)m
′
k

=
h(k,2)m

′
2

h(k,2)m
′
k

= . . . =
h(k,gk)m

′
2

h(k,gk)m
′
k

, (4.69)

...
...

. . .
...

h(k,1)m
′
k−1

h(k,1)m
′
k

=
h(k,2)m

′
k−1

h(k,2)m
′
k

= . . . =
h(k,gk)m

′
k−1

h(k,gk)m
′
k

.

This results in a total of
∑K

k=1(k − 1)(gk − 1) additional constraints. Note that only

groups with more than one user (gk > 1) and which appear after the first position

(k > 1) generate these constraints.

Due to this relationship among the beamforming vectors of the different groups, it is

not possible to optimize them individually. Let rk ∈ C
gk×1 represent the power received

by the users within each group, i.e., rk = diag(Hkm
′
km

′H
k HH

k ). The joint optimization

problem corresponds to finding the matrix M′ which maximizes the minimum energy

received by the users, i.e.,

M′
opt = argmax

M′

min([ rT
1 , rT

2 , . . . , rT
K ]T) ,

subject to (4.63), (4.69), and tr(M′HM′R′
v) = P ,

(4.70)

where the min(·) operator is assumed to return the minimum element of the vector

passed as argument.

In order to avoid such a complex optimization procedure, a suboptimum methodology

which independently determines each beamforming vector is here proposed. The beam-

forming vector m′
k of each group is assumed to lie in the null space of the following

vectors:

hn , ∀ n | bn < k ,

h(i,gi)

h(i,gi)m
′
i

− h(i,j)

h(i,j)m
′
i

, ∀ i, j | i > k and j < gi ,
(4.71)

where n ∈ {1, . . . , N}, i ∈ {1, . . . , K}, and j ∈ {1, . . . , N}. The dependency among

the beamforming vectors can be resolved by beginning the calculation from the last one

(k = K) and proceeding until the first one (k = 1). After each null space projection,

the remaining degrees of freedom for determining m′
k can be exploited by performing

single-group multicast beamforming, which can be done according to the algorithms

described in Section 3.4.
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Let Hk ∈ C
gk×L denote the channel matrix of the users belonging to group k and

H̃k ∈ C
(L−Ak)×L denote the concatenation of the vectors defined in (4.71) for group k.

The null space of H̃k can be obtained through SVD, and it is denoted by Ṽ
(0)
k ∈ C

L×Ak .

The dimension Ak is given by

Ak = L−
k−1
∑

i=1

gi −
K
∑

i=k+1

(gi − 1) = L−N + K + gk − k, (4.72)

assuming that matrix H has full row rank. The equivalent channel matrix H
(eq)
k ∈

C
gk×Ak after the projection is given by H

(eq)
k = HkṼ

(0)
k . The multicast beamforming

procedure is done considering H
(eq)
k and results in the beamforming vector m

(eq)
k ∈

C
Ak×1. The kth column of the modulation matrix M′ is then set to m′

k = Ṽ
(0)
k m

(eq)
k ,

i.e.,

M′ = [ Ṽ
(0)
1 m

(eq)
1 , . . . , Ṽ

(0)
K m

(eq)
K ] . (4.73)

It should be noted that the independent optimization of m′
k balances the energy within

each group, but not among different groups, due to the projections required by (4.71).

For this reason it is required that the available energy be redistributed among the

groups, so that the balancing effect between groups can be achieved. The power redis-

tribution matrix Γ ∈ R
K×K is defined as

Γ = diag([min(|H1Ṽ
(0)
1 m

(eq)
1 |), . . . , min(|HKṼ

(0)
K m

(eq)
K |)]T)−1 . (4.74)

In order to satisfy the transmit power constraint, a scalar variable β ∈ R is defined as

β =

√

P

tr(R′
vM

′HM′Γ2)
. (4.75)

Finally, the matrix M′
MA-THP ∈ C

L×K of the MA-THP algorithm is given by

M′
MA-THP = βM′Γ , (4.76)

with β, M′, and Γ, defined, respectively, in (4.75), (4.73), and (4.74).

The matrix M′
MA-THP lying in the null space of (4.71) allows a feasible solution of

(4.64). The filter F′
MA-THP can then be calculated as

F′
MA-THP = I− [(HM′Γ)+diagb(HM′Γ)]−1

= I− [(HM′Γ)+(HM′Γ⊙T+)]−1 .
(4.77)

The performance of THP depends strongly on how the data streams are ordered prior

to transmission. The best ordering is the one which minimizes the impact of the
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null space projections, such that the least amount of energy is lost. The optimum

ordering can only be determined by exhaustively searching among all N ! possibilities.

However, there exist more computationally efficient ordering methods which reasonably

approximate the optimal performance [JSBU07]. In the case of MA-THP, the number

of possible orderings is reduced from N ! to K!, since the position of the users within

each group does not impact the performance. On the other hand, MA-THP presents

the drawback of the additional null space projections. This may lead to cases in which

THP outperforms MA-THP.

4.5.2 Vector precoding based algorithms

4.5.2.1 Vector precoding

In this section, the Vector Precoding (VP) algorithm is described and formulated.

Similarly to the THP algorithm of Section 4.5.1.1, the multi-user unicast definition of

VP is directly applied to the multi-group multicast scenario. The VP technique, which

is also known as vector perturbation technique or modulo precoding technique [PHS05,

HPS05], can be interpreted as a generalization of the THP algorithm [PJU06,JSBU07].

Fig. 4.1 depicts the transmission chain of the VP algorithm [JSBU07], which reminds

of the linear representation of THP shown in Fig. 3.1, but without the feedback loop.� �s seq ŝeq ŝ

a z

M H D MOD

Figure 4.1. VP transmission chain.

A perturbation vector a ∈ C
N is introduced, which has the purpose of modifying the

data symbol vector s ∈ C
N such that it becomes approximately orthogonal to the

channel inverse H−1 [HPS05], thus improving the energy efficiency of the precoding

process. This perturbation depends on the current symbol vector s, i.e., it needs to

be calculated for each transmitted symbol vector. Furthermore, in order to allow the

modulo receivers to be capable of detecting the original symbol vector, the perturbation

must be of the form

a = τ(x + jy) , (4.78)

where x ∈ Z
N , y ∈ Z

N , and τ ∈ R is equivalent to the THP parameter of the same

name, which depends on the modulation scheme and is used by the modulo operator.
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It is assumed that the linear transmit filter M implements a zero-forcing algorithm,

which is given by

M = βHH(HHH)−1 , (4.79)

with β ∈ R. The optimization problem for determining the optimal vector aVP can be

expressed as

aVP = argmin
{a}

||M(s + a)||2 , subject to: (4.78) , (4.80)

which, when substituting (4.79) in (4.80), can also be written as

aVP = argmin
{a}

(s + a)H(HHH)−1(s + a) , subject to: (4.78) . (4.81)

Note that β has been disregarded from (4.81), since it is only an energy normalization

parameter. The optimization problem in (4.81) corresponds to a closest point search

in a lattice [AEVZ02], which was shown in [Mic01] to be NP-hard. Nevertheless, there

exist efficient suboptimal solutions to this problem. The THP algorithm is one of

them, representing a practical way of determining a, which is done through channel

triangularization and successive interference cancellation at the feedback filter. THP

achieves good results when appropriate ordering strategies are employed [JSBU07].

In [HPS05], the vector perturbation technique is introduced for the multi-user unicast

case and an algorithm based on the QR decomposition and successive interference

cancellation, similar to THP, is also proposed.

Lattice reduction techniques, such as in [WFH04,PJU06], can also be applied in order to

obtain simple and efficient methods for determining the solution to (4.81). Particularly,

the Lenstra-Lenstra-Lovász (LLL) algorithm [LLJL82] can be used to find a reduced

basis, and the closest point search can be efficiently performed through the Schnorr-

Euchner algorithm [SE94].

It is assumed that the frame duration consists of a total of Ns symbol intervals, and

that for the whole frame duration the channel does not change significantly. For each

discrete-time symbol interval i, the optimal perturbation vector is calculated using one

of the aforementioned techniques. The transmit power constraint needs to take into

account the average power during the frame period, being expressed as

1

Ns

Ns
∑

i=1

||Mseq[i]||2 ≤ P . (4.82)

Substituting (4.79) in (4.82), and considering that all available power is used, the

normalization factor β can be calculated. The resulting modulation matrix MVP ∈
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C
L×N is given by

MVP =

√

√

√

√

√

NsP
Ns
∑

i=1

sH
eq[i](HHH)−1seq[i]

HH(HHH)−1 , (4.83)

and the receive filter can be expressed as

DVP =

√

√

√

√

√

Ns
∑

i=1

sH
eq[i](HHH)−1seq[i]

NsP
I . (4.84)

4.5.2.2 Multicast-aware vector precoding

In this section, the multicast-aware VP (MA-VP) algorithm is proposed. The VP al-

gorithm presented in the previous section uses ZF for determining the beamforming

matrix. The MA-VP algorithm, however, considers the MA-ZF approach for calculat-

ing matrix M′ ∈ C
L×K .

Let s′ ∈ C
K denote the reduced form of the symbol vector, then the perturbation vector

also has a reduced dimension a′ ∈ C
K , and the precoded symbol vector s′eq ∈ C

K is

defined as s′eq = s′ + a′.

Matrix H̃k ∈ C
(N−gk)×L and its SVD are given by

H̃k = [HT
1 , . . . , HT

k−1 , HT
k+1 , . . . , HT

K ]T , (4.85a)

H̃k = ŨkS̃k[ Ṽ
(1)
k , Ṽ

(0)
k ]H , (4.85b)

where Hk ∈ C
gk×L, Ũk ∈ C

(N−gk)×(N−gk), S̃k ∈ R
(N−gk)×L, Ṽ

(1)
k ∈ C

L×r̃k , Ṽ
(0)
k ∈

C
L×(L−r̃k), and r̃k denotes the rank of matrix H̃k.

The multicast beamforming optimization, which can be implemented according to any

of the algorithms in Section 3.4, is done for each group considering the equivalent

channel after the null-space projection H
(eq)
k = HkṼ

(0)
k ∈ C

gk×(N−r̃k), and resulting in

the beamforming vector m
(eq)
k ∈ C

(N−r̃k).

The beamforming matrix M′
MA-VP ∈ C

L×K of the MA-VP algorithm can be written as

M′
MA-VP = βM′Γ , (4.86)
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with

M′ = [ Ṽ
(0)
1 m

(eq)
1 , . . . , Ṽ

(0)
K m

(eq)
K ] , (4.87a)

Γ = diag(min(|H1Ṽ
(0)
1 m

(eq)
1 |) , . . . , min(|HKṼ

(0)
K m

(eq)
K |))−1 , (4.87b)

where β ∈ R, M′ ∈ C
L×K , and Γ ∈ R

K×K . The β parameter depends on the pertur-

bation vector and is calculated at the end of the section.

The perturbation vector a′ must have integer components, such that

a′ = τ(x + jy) , (4.88)

where x ∈ Z
K , y ∈ Z

K , and τ ∈ R. The optimal a′ corresponds to the solution of the

following optimization problem

a′
MA-VP = argmin

{a′}

||M′Γ(s′ + a′)||2 , subject to: (4.88) . (4.89)

Assuming a frame duration of Ns symbol intervals, the optimal perturbation vector is

calculated for each discrete-time symbol interval i using one of the techniques men-

tioned in the previous section, e.g., Schnorr-Euchner algorithm [SE94]. The energy

normalization parameter β is given by

β =

√

√

√

√

√

NsP
Ns
∑

i=1

s′Heq[i]ΓM′HM′Γs′eq[i]

. (4.90)

4.5.3 Hybrid linear and non-linear precoding

Another possible beamforming approach for the multi-group multicast case is to em-

ploy a mix of linear and non-linear precoding schemes. Assuming a scenario in which

there are several unicast users, i.e., more than one multicast group of size 1, the term

“unicast group” is adopted to denote the set of all unicast users. The idea is to em-

ploy linear precoding to mitigate the interference among the multicast groups and the

unicast group, and non-linear precoding to mitigate the interference within the uni-

cast group. The proposed Hybrid Linear and Non-linear Precoding (HLNP) algorithm

specifically considers the MA-ZF and THP algorithms as the linear and non-linear

parts, respectively. Other combinations of algorithms are possible as well, but will not

be regarded here.

In order to simplify the notation, regarding the position of the users within the vectors

and matrices that describe the system, it is assumed that the unicast group comes
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first, and it is then followed by the multicast groups. Note that the ordering among

groups is not relevant, since the inter-group interference is assumed to be removed by

the linear filter. However, it still plays an important role within the unicast group,

since the THP algorithm performs successive interference cancellation.

Let Nuc indicate the number of unicast users, then each beamforming vector m′
k ∈ C

L×1

must lie in the null space of

hn ,

∀n ∈ {1, . . . , Nuc} | n < k ,

∀n ∈ {Nuc + 1, . . . , N} | bn 6= k .

(4.91)

These null space projections result in an HM′ matrix with a triangular block corre-

sponding to the unicast users. This can be illustrated for the exemplary scenario of

Section 2.3, which has two unicast users (Nuc = 2) and one multicast group with two

users, as follows

HM′ =









h1m
′
1 h1m

′
2 h1m

′
3

h2m
′
1 h2m

′
2 h2m

′
3

h3m
′
1 h3m

′
2 h3m

′
3

h4m
′
1 h4m

′
2 h4m

′
3









=









x 0 0
x x 0
0 0 x
0 0 x









, (4.92)

where x indicates non-zero values.

Let Hk ∈ C
gk×L denote the channel matrix of the users belonging to group k and

H̃k ∈ C
(L−Ak)×L denote the concatenation of the vectors defined in (4.91) for group k.

The null space of H̃k can be obtained through SVD, and it is denoted by Ṽ
(0)
k ∈ C

L×Ak .

The dimension Ak is given by

Ak =

{

L−N + Nuc − k + 1 , for k ≤ Nuc

L−N + gk , for k > Nuc

, (4.93)

assuming that matrix H has full row rank. The equivalent channel matrix H
(eq)
k ∈

C
gk×Ak after the projection is given by H

(eq)
k = HkṼ

(0)
k . It is assumed that one of the

multicast beamforming algorithms of Section 3.4 is applied considering H
(eq)
k , which

results in the beamforming vector m
(eq)
k ∈ C

Ak×1. The kth column of the modulation

matrix M′ is then set to m′
k = Ṽ

(0)
k m

(eq)
k , i.e.,

M′ = [ Ṽ
(0)
1 m

(eq)
1 , . . . , Ṽ

(0)
K m

(eq)
K ] . (4.94)

In order to balance the energy among the multicast groups, the power redistribution

matrix Γ ∈ R
K×K is defined as

Γ = diag([min(|H1Ṽ
(0)
1 m

(eq)
1 |), . . . , min(|HKṼ

(0)
K m

(eq)
K |)]T)−1 . (4.95)
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In order to satisfy the transmit energy constraint, a variable β ∈ R is defined as

β =

√

P

tr(R′
vM

′HM′Γ2)
. (4.96)

Finally, the matrix M′
HLNP ∈ C

L×K of the HLNP algorithm is given by

M′
HLNP = βM′Γ , (4.97)

with β, M′, and Γ, defined, respectively, in (4.96), (4.94), and (4.95).

Let Huc ∈ C
Nuc×L, M′

uc ∈ C
L×Nuc , and F′

uc ∈ C
Nuc×Nuc denote the channel, modulation,

and feedback matrices of all unicast users, respectively. The expression for the global

feedback filter F′
MA-HLNP ∈ C

K×K can be expressed as

F′
uc = I− diag(HucM

′
uc)

−1HucM
′
uc ,

F′
HLNP =

[

F′
uc 0

0 0

]

,
(4.98)

where the 0 entries correspond to null matrices of appropriate dimension.

The transmitter structure of the THP algorithm shown in Fig. 3.1 is also valid for this

case, since the feedback matrix, and consequently the modulo operator, will not have

any impact on the multicast groups. The receiver structure of THP is also valid for

the HLNP algorithm. In the case of multi-group multicast, the receiver structure can

be additionally simplified, since the receivers do not need to implement the modulo

operator.

4.6 Performance and complexity analysis

4.6.1 Analysis assumptions

The scenario, in which the performance of the algorithms of Sections 4.4 and 4.5 is

analyzed through simulations, consists of a single cell equipped with an L-element uni-

form linear antenna array and N single antenna mobile terminals, which belong to one

of K multicast groups. The distribution of users among groups is characterized by the

vectors b ∈ Z
N and g ∈ Z

K described in Section 2.3. The group configurations con-

sidered by the performance analysis are summarized in Table 4.1. The configurations

specified by rows 1, 2, and 3, are further referred to as C1, C2, and C3, respectively.
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Table 4.1. Group configurations considered by the performance analysis.

Config. {L,N,K} b g Description

C1 {4, 4, 3} [1, 2, 3, 3]T [1, 1, 2]T Two unicast users and a two-
user multicast group.

C2 {6, 6, 4} [1, 2, 3, 3, 4, 4]T [1, 1, 2, 2]T Two unicast users and two
two-user multicast groups.

C3 {6, 6, 3} [1, 2, 2, 3, 3, 3]T [1, 2, 3]T One unicast user, a two-user
multicast group, and a three-
user multicast group.

In the single-group multicast case, since all users belong to the same group, there is

no interference among users. In the multi-group multicast case, however, there exists

interference among users of different groups, i.e., inter-group interference. Due to this

inter-group interference, situations in which the number of users is larger than the

number of transmit antennas are not taken into account by this section, since such

cases are expected to achieve a poor performance.

The same simulation assumptions as presented in Section 3.5 are also valid for the

analysis conducted in this chapter. The channel model takes into account the propa-

gation effects described in Section 3.5. The Rician factor κ of (3.51) determines the

strength of the LOS component within the fast fading model. Regarding the path-loss

model, only scenario S1 of Section 3.5.1 is taken into account, since it has been verified

that scenario S2 does not have a significant impact on the relative performance of the

algorithms.

The results are presented in terms of the uncoded Bit Error Rate (BER), which is

defined by (3.54). The simulations take into account both QPSK and 16-QAM modu-

lation schemes, and the constellation is normalized such that the average symbol power

is σ2
s = 1. The total transmit power is equal to the summed power of all different sym-

bols. Since a different symbol is transmitted to each multicast group, the total transmit

power is given by the power of each symbol multiplied by the number K of multicast

groups, i.e., P = Kσ2
s = K. The τ parameter, which is specified in more details on

Appendix A.1 and is required by the modulo operations of the non-linear algorithms,

is set to 2
√

2 for QPSK and 8/
√

10 for 16-QAM [Joh04].

The simulation analysis is divided into two parts. The first part presented in Section

4.4 considers the following linear algorithms: the Matched Filter (MF), the Zero-

Forcing (ZF), the Multicast-Aware Zero Forcing (MA-ZF), the Minimum Mean Square

Error (MMSE), the Multicast-Aware Minimum Mean Square Error (MA-MMSE), the
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SINR Balancing (SB), the Multicast-Aware SINR Balancing (MA-SB), and an im-

plementation of the bisection method based on semi-definite relaxation (Bisec-SDR)

proposed in [GS06, KSL07] and discussed in Section 4.3. The second part presented

in Section 4.5 analyzes the following non-linear algorithms: the Tomlinson-Harashima

Precoding (THP), the Multicast-Aware Tomlinson Harashima Precoding (MA-THP),

the Vector Precoding (VP), the Multicast-Aware Vector Precoding (MA-VP), and the

Hybrid Linear and Non-linear Precoding (HLNP).

Regarding the implementation of the algorithms, the following assumptions are taken

into account:

• Regarding the Multicast-Aware (MA) algorithms, their single-group beamform-

ing part must be specified. The SDR approach of [SDL06] has been chosen, since

for small group sizes it almost always converges to the optimal solution.

• A total of 5 iterations is assumed for the alternating optimization procedure of

the SB and MA-SB algorithms.

• The Bisec-SDR algorithm is executed until a precision of |Preq − P | ≤ 10−3 is

reached, and the solution to the power minimization problem is obtained through

the SDR approach of [KSL07].

• The THP, MA-THP, and HLNP algorithms assume suboptimal stream ordering

[Joh04]. This reduces the number of evaluated orderings from N ! to N for THP,

from K! to K for MA-THP, and from Nuc! to Nuc for HLNP.

• The perturbation vector of the VP and MA-VP algorithms is determined based on

the Integer Least Squares (ILS) solver of the MILES optimization package [CZ06]

for MATLAB, which implements the LLL reduction and a modified version of

the Schnorr-Euchner algorithm.

4.6.2 Performance of linear algorithms

In this section, the performance of the linear multi-group multicast beamforming algo-

rithms is analyzed. The performance in terms of the BER is shown in Figs. 4.2 and 4.3

for the QPSK and 16-QAM modulation schemes, respectively. The user configuration

C1 and an NLOS scenario are assumed. The BER is depicted as a function of the

Es/N0, which represents the ratio of the symbol energy to the spectral noise density.

From Fig. 4.2 it can be seen that the MF is the algorithm presenting the worst per-

formance by far, which is due to the fact that it does not implement any interference

mitigation mechanism. The MF has a high error rate – above 10% – and not even high
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Es/N0 values are capable of improving its error floor. The ZF algorithm presents better

performance than MF, as expected, since the channel inversion totally mitigates the in-

terference among users. The MA-ZF algorithm, which is an enhanced version of ZF for

the multi-group multicast scenario, clearly outperforms ZF. The subsequent ordering

of the algorithms, in terms of their increasing performance, is given by: SB, MMSE,

MA-MMSE, MA-SB, and Bisec-SDR. Some explanations are given in the following.

The Multicast-Aware (MA) algorithms present significant performance gains with

regard to their respective non-MA counterparts, which is due to the implemented

multicast-aware enhancements. The most noticeable gain, of approximately 9dB, is

the one achieved by MA-SB with regard to SB. When comparing the non-MA algo-

rithms, it is seen that their order of increasing performance is given by {ZF → SB →
MMSE}. For the MA algorithms, the order is given by {MA-ZF → MA-MMSE →
MA-SB}. The advantage of MMSE over ZF, as well as the advantage of MA-MMSE

over MA-ZF, was expected and it is mainly due to the introduction of the regulariza-

tion factor, which avoids the inversion of ill-conditioned matrices. With regard to the

SB algorithm, if only unicast users were taken into account, then SB would achieve

the best performance. For the multi-group multicast case, however, it turns out be-

ing an inadequate strategy, since its optimization is based on an SINR calculation

that assumes that all users interfere with each other. The MA-SB algorithm provides,

in general, a better approximation to the real SINR, thus approaching the optimal

case and outperforming the other linear MA algorithms. The Bisec-SDR algorithm

presents the best performance, but at the cost of a much higher complexity, as it will

be discussed later in the complexity analysis section.

When changing the modulation scheme from QPSK to 16-QAM, the achieved results

are shown in Fig. 4.3. Besides the expected performance losses due to the higher order

modulation, it can be seen that the MA-SB algorithm gets closer to the Bisec-SDR,

with the difference between them dropping to less than 1dB. Furthermore, the relative

performance among the MA algorithms and among the non-MA algorithms is still the

same as in the previous case. What can be perceived is that the MA-ZF algorithm

outperforms both the MMSE and SB algorithms for high Es/N0 values. This tendency

could already be seen in Fig. 4.2 for the QPSK modulation, but in the case of 16-QAM

it happens much sooner.

The results for configurations C2 and C3 are shown in Figs. 4.4 and 4.5, respectively,

for QPSK modulation. When comparing the absolute results displayed in both these

figures and in Fig. 4.2, it can be seen that, when considering the MA algorithms, C3

presents better results than C2, which has better results than C1. The reason for this

behavior lies in the number of available degrees of freedom of the antenna array for
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Figure 4.2. BER performance of linear multi-group multicast beamforming: QPSK,
NLOS, C1, cf. Table 4.1.
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Figure 4.3. BER performance of linear multi-group multicast beamforming: 16-QAM,
NLOS, C1, cf. Table 4.1.
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each configuration. This measure can be expressed as the ratio between the number

of transmit antennas and the number of multicast groups, i.e., L/K. The calculation

of this measure for each configuration leads to: LC3/KC3 > LC2/KC2 > LC1/KC1 ,

which is in accordance with the achieved results. Another reason for the performance

improvement of the MA algorithms when going from C1 to C3 is due to the increased

number of multicast users, which leads to a more significant impact of the multicast

enhancements on the results. Note that the MA-SB algorithm is an exception, which

is discussed in the following.

The relative performance among the algorithms shown in Fig. 4.4 for configuration C2

is similar to that obtained for C1 in Fig. 4.2. The MA-SB algorithm has a performance

close to that of Bisec-SDR, and MA-MMSE is the third best algorithm. However, in

Fig. 4.5, which depicts configuration C3, it is seen that the performance of MA-

SB becomes worse, being even surpassed by that of the MA-MMSE algorithm. This

occurs due to the fact that the MA-SB algorithm is based on an approximate SINR,

and the accuracy of this approximation increases with the increasing number K of

multicast groups. The closer K gets to the number N of users, the closer the SINR

approximation gets to the actual SINR. The other way around, when K is reduced, the

SINR approximation becomes more inaccurate, thus resulting in worse performance

results. A similar behavior is verified for the SB algorithm, which also takes into

account an SINR that coincides with the real value only for the unicast case, i.e., when

K = N .

In order to analyze the impact of the channel correlation on the performance of the

algorithms, the Rician factor κ of (3.51) is gradually varied between NLOS (κ → 0)

and LOS (κ → ∞) scenarios, given a fixed Es/N0. Fig. 4.6 shows the results when

considering configuration C1, QPSK modulation, and Es/N0 = 20dB. It can be seen

that, with increasing κ, the BER of all algorithms increases. Up to κ = 1 the impact

is not really relevant, but then it starts to significantly degrade the BER, leading to

exceedingly high error rates as the pure LOS scenario is approached. Differently from

the single-group case, for which the presence of LOS represented an improvement in

terms of BER, the opposite behavior is observed for the multi-group scenario. Due to

the increased channel correlation, it becomes more difficult to suppress the inter-group

interference, thus resulting in a poor performance. Regarding the relative performance

among the algorithms, it is similar to that of Fig. 4.2, but with the following two

exceptions for large κ values: the ZF is outperformed by MF, due to the highly ill-

conditioned channel matrix, and the MA-MMSE gets worse than MMSE, due to the

inefficiency of applying single-group beamforming on an equivalent regularized LOS

channel. For κ ≥ 100 the MC-SB algorithm achieves practically the same performance

as Bisec-SDR .
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Figure 4.4. BER performance of linear multi-group multicast beamforming: QPSK,
NLOS, C2, cf. Table 4.1.
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Figure 4.5. BER performance of linear multi-group multicast beamforming: QPSK,
NLOS, C3, cf. Table 4.1.
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Figure 4.6. Impact of Rician factor κ on the BER of linear multi-group multicast
beamforming: QPSK, Es/N0 = 20dB, C1, cf. Table 4.1.

4.6.3 Performance of non-linear algorithms

The performance of the non-linear algorithms is now analyzed considering the same

simulation scenarios as in the previous analysis of the linear algorithms. Figs. 4.7

and 4.8 show the BER results as a function of the Es/N0 for QPSK and 16-QAM

modulation schemes, respectively, assuming NLOS and user configuration C1.

From both Figs. 4.7 and 4.8, it can be seen that the best performance is achieved

by the VP algorithm, followed by MA-VP, THP, MA-THP, and HLNP. Differently

from the results achieved by the linear algorithms, the non-linear Multicast-Aware

(MA) algorithms present worse performance than their respective counterparts without

multicast awareness. In the following, these results are discussed in more details.

The verified decreasing order of performance {VP, THP, HLNP} was already expected,

since the VP algorithm solves a complex optimization problem for determining its

solution, the THP algorithm finds the solution based on a less complex suboptimal

successive methodology, and the HLNP is a hybrid algorithm that looses some of the

advantages of non-linear algorithms by introducing a linear part.

In the case of the MA-THP algorithm, as mentioned in Section 4.5.1.2, a reason for

this poor performance can be attributed to the additional null space projections spec-
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Figure 4.7. BER performance of non-linear multi-group multicast beamforming:
QPSK, NLOS, C1, cf. Table 4.1.
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Figure 4.8. BER performance of non-linear multi-group multicast beamforming: 16-
QAM, NLOS, C1, cf. Table 4.1.
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ified in (4.71), which are required in order to achieve a feasible feedback matrix. By

analyzing the MA-THP algorithm in more details, it can be verified that there are

particular channel realizations in which MA-THP outperforms THP, i.e., in which the

gains provided by the multicast awareness outweight the drawbacks of the additional

null space projections. The problem is how to identify, based on the channel knowl-

edge, which algorithm would be more adequate without having to explicitly apply each

one and compare the results. Nevertheless, it has been shown by the author of this

thesis in [SK07a] that the combination of both MA-THP and THP, which is done by

selecting the best algorithm for each iteration of the ordering procedure, only leads to

slight performance gains with regard to THP.

Since the feedback filter structure is not present in the MA-VP algorithm, the problem

associated with the additional null space projections of MA-THP does not concern

MA-VP. The drawback of the MA-VP approach is that, in spite of the single-group

beamforming and the reduced number of null space projections with regard to VP,

the reduced dimensions of the modulation matrix and signal vector severely limit the

degrees of freedom in determining the perturbation vector. It should be mentioned

that there are particular channel realizations in which MA-VP outperforms VP, but

on average the opposite behavior is verified.

Fig. 4.8 shows the performance results for 16-QAM. In comparison to Fig. 4.7, besides

the expected BER degradation, due to the higher modulation order, it can be seen that

the relative performance of the algorithms remains the same.

The results for user configurations C2 and C3 are depicted in Figs. 4.9 and 4.10, re-

spectively, for the QPSK modulation scheme. It can be seen from Fig. 4.9 that C2

does not introduce any significant difference with regard to the relative performance

among the algorithms, when compared to configuration C1. In the case of configura-

tion C3, Fig. 4.10 shows that MA-VP is outperformed by THP, and that MA-VP gets

closer to the MA-THP and HLNP algorithms. This performance degradation of the

non-linear MA algorithms in Fig. 4.10 is a consequence of the reduced dimension of the

signal vector (K = 3) in comparison to Fig. 4.9 (K = 4). The smaller the number of

groups, the larger the impact of the previously discussed drawbacks of the non-linear

MA algorithms.

The impact of the Rician factor κ on the BER performance of the algorithms, assuming

user configuration C1, QPSK modulation, and Es/N0 = 20dB, is shown in Fig. 4.11.

Similar to the corresponding results for the linear algorithms, it can be seen that the

BER increases significantly for high values of the Rician factor κ. For values of κ above

103 the difference in performance among the algorithms decreases, but the BER values
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Figure 4.9. BER performance of non-linear multi-group multicast beamforming:
QPSK, NLOS, C2, cf. Table 4.1.
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Figure 4.10. BER performance of non-linear multi-group multicast beamforming:
QPSK, NLOS, C3, cf. Table 4.1.
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Figure 4.11. Impact of Rician factor κ on the BER of non-linear multi-group multicast
beamforming: QPSK, Es/N0 = 20dB, C1, cf. Table 4.1.

are unacceptably high. For scenarios with too strong LOS components it is not feasible

to perform multi-group multicast beamforming, the best alternative being to have a

single multicast group per resource and apply single-group multicast beamforming.

Now that the BER performance of all linear and non-linear algorithms has been pre-

sented, Table 4.2 summarizes the achieved results in terms of the Es/N0 required in

order to guarantee a BER of 10−3. An NLOS scenario is assumed, as well as different

user configurations and modulation schemes. A comparison among the algorithms re-

veals that the best non-linear algorithm – VP – outperforms the best linear algorithm

– Bisec-SDR – in almost all cases, except for configuration C3 with QPSK modulation.

The third best performance is obtained by the MA-SB algorithm. It should be noted,

however, that the advantage of VP and Bisec-SDR with regard to MA-SB comes at

the cost of a significantly higher computational complexity, which will be discussed in

the next section.
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Table 4.2. Es/N0 in dB required in order to provide an uncoded BER of 10−3.

Algorithm QPSK, C1 16-QAM, C1 QPSK, C2 QPSK, C3

Linear

MF ∞ ∞ ∞ ∞
ZF 28.4 34.2 28.8 30.0

MA-ZF 24.8 30.6 23.2 21.7

MMSE 21.3 31.9 19.5 20.2

MA-MMSE 16.6 27.1 14.3 12.1

SB 23.3 34.4 20.7 26.0

MA-SB 14.6 23.7 12.6 14.2

Bisec-SDR 13.3 23.2 10.7 9.2

Non-linear

THP 20.3 24.1 17.5 19.0

MA-THP 22.8 26.7 21.3 25.4

VP 12.7 17.9 10.1 11.3

MA-VP 16.8 21.5 15.2 24.0

HLNP 22.8 26.6 21.5 25.1

4.6.4 Remarks on complexity

In this section, the complexity order of the algorithms is analyzed and compared. The

following assumptions are considered when calculating the complexity order:

• The MA-ZF, MA-MMSE, MA-THP, and HLNP algorithms have their complex-

ity order determined essentially by the following two procedures: the null-space

projections and the single-group beamforming. The null space projections are

implemented through SVD, whose complexity is given in Appendix A.2. The

term O(SGBA×B) expresses the complexity order of a single-group beamform-

ing algorithm, taking into account an equivalent channel matrix with dimensions

A × B. This equivalent channel is explained in more details in Sections 4.4.2.2,

4.4.3.2, 4.5.1.2, and 4.5.3. This complexity depends on the chosen single-group

beamforming algorithm, which can be any of those presented in Chapter 3.

• The α parameter of the SB and MA-SB algorithms refers to the number of iter-

ations considered by the alternating optimization procedure.

• According to [KSL05, KSL07], the Bisec-SDR algorithm, which maximizes the

minimum SINR for a given channel model, has its complexity divided into two
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parts: the number of iterations required for convergence, and the number of

arithmetic operations required by each iteration. The first part takes into account

a precision of 10−3. With regard to the second part, the complexity order given

in [KSL07] is expressed in terms of the number of arithmetic operations, i.e.,

both sums and multiplications are considered. Since in this section only the

number of multiplications is taken into account, a factor of 1/2 is introduced in

order to roughly approximate the number of multiplications from the number of

arithmetic operations.

• The complexity order of the VP and MA-VP algorithms is mainly determined

by the integer least squares optimization problem associated to the calculation

of the perturbation vector. According to [JSBU07] this problem does not have

polynomial complexity. The exact expression for the complexity order is not

trivial to be derived. For a general comparison, it suffices to say that it has

non-polynomial complexity and the complexity order is significantly higher than

that of the other analyzed algorithms.

The complexity of the algorithms is shown in Table 4.3. It is expressed in terms of the

complexity order and makes use of the big O notation. The algorithms are presented

according to their increased order of complexity. Note that this order depends on the

previously discussed assumptions concerning each algorithm.

In order to provide a better insight in the complexity of the different algorithms, Fig.

4.12 shows the complexity order as a function of the number N of users. Note that

the y-axis is shown in logarithmic scale. The number L of transmit antennas is set to

be equal to the number N of users, and the number K of groups is adjusted in such a

way that half of the users are unicast users and the other half is roughly divided into

equally sized multicast groups with at least 2 users per group. It is assumed that α = 5

and the USMF is selected as the single-group beamforming algorithm. The choice of

USMF is due to the fact that it presents a much lower complexity than SDR and, as

shown in Section 3.5, it provides a reasonable approximation to the SDR performance.

The lowest complexity is presented by the MF algorithm, which is due to the fact

that it does not mitigate the interference. The drawback of its low complexity, as the

previous performance analysis has shown, is that it achieves the worst BER results.

The ZF and MMSE algorithms introduce a channel inversion in order to mitigate

the inter-group interference, for this reason they present a higher complexity than MF.

Both ZF and MMSE have the same complexity order, since the only difference between
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Table 4.3. Computational complexity of the beamforming algorithms.

Algorithm Complexity order

MF O(NLK)

ZF O(NLK + L3 + L2K + LK2 + 1
2
NL2)

MMSE O(NLK + L3 + L2K + LK2 + 1
2
NL2)

THP O(3N4)

MA-ZF O(4L3K + 2NL2K) +
K
∑

k=1

O(SGBgk×(L−N+gk))

MA-MMSE O(6N3K) +
K
∑

k=1

O(SGBgk×gk
)

MA-THP O(3K4 + 4L3K + 2NL2K − L2K2) +
K
∑

k=1

O(SGBgk×Ak
)

HLNP O(3N4
uc + 4L3K + 2NL2K −L2N2

uc) +
K
∑

k=1

O(SGBgk×Ak
)

SB O(5
3
αNL3 + αN2L2)

MA-SB O(5
3
αNL3 + αN2L2)

Bisec-SDR O(3
√

KL) O(1
2
(L2K + N)3.5)

VP Non-polynomial

MA-VP Non-polynomial
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Figure 4.12. Complexity order of the algorithms as a function of the number of users
N , assuming that L = N .
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them lies on the regularization factor, which does not increase the complexity order.

The THP algorithm has a complexity higher than both ZF and MMSE, which can be

attributed to the stream ordering procedure performed by THP.

Next, the MA-ZF, MA-MMSE, MA-THP, and HLNP, present practically the same

complexity order, being slightly higher than that of THP. These algorithms have the

null-space projections and single-group beamforming procedures in common, which are

the preponderant factors for their complexity order, and for this reason they present

an equivalent complexity order.

The alternating optimization employed by the SB and MA-SB algorithms is responsi-

ble for the increased complexity order with regard to the previous group of algorithms

– MA-ZF, MA-MMSE, MA-THP, and HLNP. The SB and MA-SB present practically

the same complexity order. Both algorithms have a similar structure and the addi-

tional power redistribution of MA-SB is only performed once, thus not affecting the

complexity order.

Finally, the Bisec-SDR algorithm has a much higher complexity than the other algo-

rithms, except for the non-polynomial VP-based algorithms. This higher complexity

of Bisec-SDR is due to the numerical optimization performed by the SDP solver. Even

though the complexity order of Bisec-SDR may correspond to an upper complexity

bound, as mentioned in [KSL05], the actual complexity is still expected to be higher

than that of the other algorithms.

4.7 Conclusions

In this chapter, the multi-group multicast problem has been investigated. Several

linear and non-linear algorithms have been formulated for the multi-group multicast

case, and multicast-aware enhancements have been proposed. Both the performance

and complexity of the algorithms have been analyzed throughout the chapter. The

main conclusions may be summarized as follows:

• In terms of performance, the best algorithm is VP, followed by the Bisec-SDR

algorithm. The former is a non-linear algorithm that introduces a perturbation

vector, which is found as the solution of an integer least squares optimization

problem. The latter is a linear algorithm that provides a tight approximation

to the problem of maximizing the minimum SINR. Both algorithms, however,
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present the drawback of high computational complexity with regard to the other

algorithms.

• The proposed multicast-aware enhancements of the linear algorithms – MA-ZF,

MA-MMSE, and MA-SB – present significant gains with regard to the original

algorithms – ZF, MMSE, and SB. In the case of MA-ZF and MA-MMSE, the

performance gain with regard to ZF and MMSE comes at the cost of a certain

increase in complexity, due to the null space projections and single-group beam-

forming procedures. In the case of MA-SB, however, the proposed modifications

do not significantly increase the complexity with regard to SB.

• Non-linear multicast-aware algorithms – MA-THP and MA-VP – have also been

derived in this chapter. However, it has been shown that their performance

is actually worse than that of the THP and VP algorithms, respectively. The

reasons for this, in the case of MA-THP, are the drawbacks related to the ad-

ditional null space projections, whereas for MA-VP the problem is due to the

reduced dimension of the perturbation vector. Additionally, a hybrid linear/non-

linear algorithm (HLNP) has been derived. Among the non-linear algorithms

it presents, as expected, the worst performance, but with regard to the linear

algorithms, it outperforms MA-ZF. A comparison of HLNP with MA-MMSE is

not fair, since HLNP is based on a ZF criterion. An MMSE version of HLNP is

expected to outperform the linear MA-MMSE.

• The best trade-off in terms of performance and complexity is achieved by the

proposed MA-SB and MA-MMSE algorithms. The choice among these algo-

rithms depends on the ratio between the number of users and number of multicast

groups, i.e., N/K. When regarding both performance and complexity aspects,

the MA-MMSE algorithm is more adequate for higher ratios (K → 1), whereas

the MA-SB is advised for lower ratios (K → N).
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Chapter 5

Resource allocation in multi-carrier

multicast systems

5.1 Introduction

The two previous chapters have dealt with beamforming techniques for both single-

group and multi-group multicast scenarios when assuming a single subcarrier, i.e., the

beamforming is done for each subcarrier independently. The issue of how the radio

resources are allocated is now addressed in this chapter. The term “radio resources”

refers to both the available subcarriers as well as the available transmit power at the

base station. Only a few works have dealt with resource allocation specifically for

multi-carrier multicast systems, such as [SH04,SPC05] and the author of this thesis in

[SK07c]. This topic is further investigated in this chapter, which is organized as follows.

In Section 5.2, an overview of the theme of resource allocation in multi-carrier multicast

systems is briefly presented. The major contribution of the chapter corresponds to the

analysis and proposal of different power allocation techniques for multi-carrier multicast

systems, which is presented in Section 5.3. Among the proposed algorithms are: the

sum throughput maximization algorithm, which is a generalization of water-filling to

the multicast case, a simplified sum throughput maximization algorithm based on group

metrics, and a fairness-oriented algorithm. A performance and complexity analysis

follows in Section 5.4, which provides a comparison of the proposed algorithms taking

into account the trade-off between throughput and fairness. In Section 5.5, some issues

are discussed with regard to the allocation of resources in SDMA scenarios. Finally,

the main conclusions are drawn in Section 5.6.

5.2 Overview of resource allocation

In this section, an overview of resource allocation in multi-carrier multicast systems is

presented. The resource allocation can be divided into two parts: subcarrier allocation

and power/bit allocation.

The subcarrier allocation problem in multi-carrier multicast systems, similarly to the

unicast case, consists of determining which subcarriers are assigned to which users. The
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main difference with regard to unicast is that the same subcarrier may be assigned to

users belonging to the same group, since they do not interfere with each other.

In principle, known unicast subcarrier allocation techniques, such as in [WCLM99,

BGWM07], can be applied to the multicast case. In order to determine which subcarrier

should be allocated to a multicast group, a single metric representative of the whole

group is required. This group metric is a parameter that must reflect the characteristics

of the group and which also depends on the optimization objective of the allocation

algorithm.

Some algorithms specific for the multicast case have been proposed by previous works.

In [SH04], Suh and Hwang developed a dynamic subcarrier and bit allocation algorithm

for multicast OFDM systems. They tackle the problem of jointly assigning subcarri-

ers, power, and bits, for which a suboptimum strategy similar to that of the unicast

case [WCLM99] is proposed. First the subcarrier allocation is performed, and then

the bit/power allocation algorithm takes place. The optimization criterion for the sub-

carrier allocation corresponds to the maximization of the sum throughput subject to

transmit power and minimum BER constraints. It should be noticed that, in this case,

not necessarily all users of a given multicast group are simultaneously assigned to the

same resource. Some users in bad channel conditions may require too much power in

order to satisfy the BER constraints, thus not being assigned together with the other

group members.

The algorithm proposed in [SPC05], which is an extension of [SH04], incorporates char-

acteristics of proportional fair scheduling into the allocation procedure. The algorithm

aims at increasing the data rate of the worst users by allocating additional subcarriers

whenever the additional allocations improve the long-term average throughput.

In this chapter, a similar decoupled approach is taken into account, in which the

subcarrier allocation is performed first and then is followed by the power allocation

procedure. A simple subcarrier allocation algorithm is considered, which is described

later in this chapter. Regarding the power allocation, it corresponds to the main focus

of the analysis, for which different algorithms are proposed and evaluated. Note that,

since a general case of Gaussian signalling is assumed, the bit allocation part is not

taken into account.
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5.3 Power allocation

5.3.1 System assumptions

The scenario considered in this section corresponds to the downlink of a single cell in

a cellular multi-carrier system. A single-antenna base station and single-antenna users

are assumed. Note that, in the case of multiple antennas without SDMA, the same

algorithms are also applicable, whereas for the SDMA case there are some differences,

which are approached later in Section 5.5. There are F available subcarriers and N

users within the cell. These N users are grouped into K multicast groups. Since in this

case, differently from the previous chapters, a single-antenna base station and multiple

subcarriers are considered, the channel matrix is now defined as H ∈ C
N×F , i.e., the

rows correspond to users and the columns to subcarriers.

It is assumed that the subcarrier allocation has already been performed, and therefore

the information concerning which users are associated to which subcarrier is available

to the power allocation algorithm. The subcarrier allocation matrix A ∈ Z
N×F , with

elements Ai,j ∈ {0, 1}, determines which users are active within each subcarrier, where 0

and 1 correspond to the inactive and active states, respectively. No intracell interference

is assumed, therefore only users of the same multicast group may share one subcarrier.

The power allocation problem consists of determining the power vector p =

[ p1, . . . , pF ]T ∈ R
F , which indicates the amount of power pf allocated to each subcar-

rier f . The allocation can be done according to different optimization criteria, such as

the maximization of the throughput or the maximization of the minimum SNR. The

algorithms proposed in the following subsections, which have different characteristics

with regard to their complexity, capacity, and fairness, are namely: Sum Throughput

Maximization, Sum Throughput Maximization based on Group Criterion, and Fair

Power Allocation.

5.3.2 Sum throughput maximization

In this section, the Sum Throughput Maximization (STM) algorithm is introduced.

This algorithm has the purpose of maximizing the total throughput of the system,

which is defined as the sum of the bit rates perceived by the individual users. The

throughput of user n associated to subcarrier f is denoted by Rn,f , and if Gaussian

signalling is assumed it can be written as

Rn,f = log2(1 + pfGn,f ), (5.1)
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where pf is the power allocated to subcarrier f and Gn,f is an element of matrix

G ∈ R
N×F , which corresponds to the normalized channel gain conditioned to the

subcarrier allocation, i.e., Gn,f = (|Hn,f |2/σ2
z) · An,f . In order to compose the matrix

G, channel knowledge is required, which is assumed to be available at the transmitter.

The optimization problem can be expressed as

popt = max
p

F
∑

f=1

N
∑

n=1

log2(1 + pfGn,f ) ,

subject to:











pf ≥ 0 , ∀ f ∈ F ,
F
∑

f=1

pf = P ,

(5.2)

where the first constraint avoids negative power levels, P is the total available power,

and F denotes the set of all subcarrier indices f = 1, . . . , F .

The Lagrangian function L(p) and its partial derivative with regard to pf can be

expressed, respectively, as

L(p) =
F
∑

f=1

N
∑

n=1

log2(1 + pfGn,f ) +
F
∑

f=1

νfpf − µ

(

F
∑

f=1

pf − P

)

, (5.3a)

∂ L(p)

∂ pf

=
F
∑

f=1

Gn,f

1 + pfGn,f

+ νf − µ . (5.3b)

where µ ∈ R and νf ∈ R are Lagrange multipliers. Note that, for simplicity of notation,

a loge(2) term is omitted from (5.3b), where e is the base of the natural logarithm.

This consideration is valid, since the solution of (5.2) is the same independent of the

logarithm’s base.

The Karush-Kuhn-Tucker (KKT) necessary conditions for optimality [BV04] lead to

the following set of equations:











































pf ≥ 0 , ∀ f ∈ F , (5.4a)
F
∑

f=1

pf = P , (5.4b)

νf ≥ 0 , ∀ f ∈ F , (5.4c)

νfpf = 0 , ∀ f ∈ F , (5.4d)

∂ L(p)/∂ pf = 0 ∀ f ∈ F . (5.4e)
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The multiplier νf can be isolated by substituting (5.3b) into (5.4e). When inserting the

isolated νf into (5.4c) and (5.4d), respectively, the following equations are obtained:

µ ≥
N
∑

n=1

Gn,f

1 + pfGn,f

, ∀ f ∈ F , (5.5a)

pf

(

µ−
N
∑

n=1

Gn,f

1 + pfGn,f

)

= 0 , ∀ f ∈ F . (5.5b)

From both these conditions and (5.4a), it follows that µ is related to the power of each

subcarrier f according to























pf = 0 , for µ ≥
N
∑

n=1

Gn,f , (5.6a)

µ =
N
∑

n=1

Gn,f

1 + pfGn,f

, for µ <
N
∑

n=1

Gn,f . (5.6b)

A single level µ therefore determines the power of all subcarriers. It should be noted

that it is not possible to explicitly express pf as a function of µ in (5.6). However,

(5.6b) can be rewritten as the following polynomial in pf :

N
∑

j=1

(pf + G−1
j,f −Nµ−1)

N
∏

i=1, i6=j

(pf + G−1
i,f ) = 0 , (5.7)

which has degree N and only one positive real root.

The problem now consists of finding an adequate value of µ such that the resulting

power vector satisfies the total power constraint. The optimal solution can be numer-

ically calculated by performing a one-dimensional search over µ [BV04].

In order to better illustrate the problem, Fig. 5.1 depicts µ as a function of pf according

to (5.6) for a system containing three subcarriers and P = 1. This example represents

a particular system snapshot, which is characterized by the instantaneous values of

the normalized channel gains Gn,f . Each curve corresponds to a subcarrier f and

monotonically decreases with increasing pf . For the considered power range, the dashed

lines indicate the maximum value of µ of each curve, which is achieved for pf = 0 and

is denoted by af . From (5.6), it follows that

af =
N
∑

n=1

Gn,f . (5.8)
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Figure 5.1. Sum throughput maximization for 3 subcarriers and P = 1.

By analyzing the problem, it can be seen that a hypothesis testing similar to that of

the traditional waterfilling algorithm [PF05] can also be done for this more general

unicast/multicast case, with the purpose of reducing the processing time of the one-

dimensional search for µ. The algorithm, which is described below, assumes that for a

given value of µ, each pf is obtained by finding the real positive root of (5.7).

1. Assign the subcarrier indices according to the increasing order of af .

Set f̃ = 1.

2. Set µ = af̃ and compute pf̃+1, . . . , pF .

If
F
∑

f=f̃+1

pf ≤ P , then proceed to step 3,

otherwise set f̃ = f̃ + 1 and repeat step 2.

3. Find µ ∈
]

af̃−1, af̃

]

such that
F
∑

f=f̃

pf = P .

Assume that a0 = 0 for the case in which f̃ = 1.

Set p1, . . . , pf̃−1 to zero and compute pf̃ , . . . , pF .

The algorithm does not eliminate the need for a numerical method in order to calculate

µ, but as it can be seen from step 3, it may benefit from a narrower search space and
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reduced dimension (vector p with some zero elements), which may result in relevant

gains in terms of processing time.

5.3.3 Sum throughput maximization based on group criterion

In this section, the Group Criterion for Throughput Maximization (GCTM) algorithm

is presented, which also aims at the maximization of the sum throughput, but cor-

responds to a simplification of the STM algorithm. It assumes that the users of a

multicast group do not have their quality indicators (channel gains) taken into account

individually. Instead, for each subcarrier, a single indicator is considered for the whole

group.

Let gf represent the group quality indicator for subcarrier f , then the optimization

problem becomes

popt = max
p

F
∑

f=1

log2(1 + pfgf ) ,

subject to:











pf ≥ 0 , ∀ f ∈ F ,
F
∑

f=1

pf = P ,

(5.9)

which can be solved directly by the waterfilling algorithm in [PF05].

The group indicator for each subcarrier can be expressed as a function of the previously

defined gain matrix G, i.e., gf = f(Gf ), where Gf is the f th column of matrix G. The

functions considered in this work are the following:

• Maximum (GCTM-Max),

• Minimum (GCTM-Min),

• Arithmetic mean (GCTM-Mean).

More details on which of the STM algorithms with group criteria are more adequate

to better approximate the solution of the STM algorithm with individual criteria are

presented in Section 5.4.
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5.3.4 Fair power allocation

The algorithms considered so far have aimed at the maximization of the sum through-

put, which is not a fair criterion in terms of user performance, since the users may

achieve bit rates which largely differ from one another. In this section, the Fair Power

Allocation (FPA) algorithm is described, which has the purpose of introducing fairness

within the power allocation procedure.

The optimization objective of the FPA algorithm is to maximize the lowest SNR within

the cell. Let the SNR perceived by user n on subcarrier f be defined as pfGn,f , then

the optimization problem can be written as

popt = max
p

min
{n,f}

+ (pfGn,f ) ,

for n = 1, . . . , N and f = 1, . . . , F ,

subject to:











pf ≥ 0 , ∀ f ∈ F ,
F
∑

f=1

pf = P ,

(5.10)

where the min+ operator is here assumed to return the minimum non-zero element.

Since the power allocated to a subcarrier does not depend on n, the problem can be

rewritten as follows:

popt = max
p

min
f

(pfg
′
f ) ,

with g′
f = min

n
+ Gn,f

(5.11)

where the same range of n and f , as well as the same constraints of (5.10), are assumed.

The expression of the optimization problem in (5.11) implies that only the worst user

within each subcarrier needs to be considered. The objective is that these worst users

in the different subcarriers achieve the same SNR γ for the optimal power vector popt,

which implies that pfg
′
f = γ for all subcarriers. Assuming that c ∈ R

F represents a

vector with elements cf = g′−1
f , ‖ · ‖1 denotes the 1-norm of a vector, and P = ‖popt‖1

is the total power constraint in vector form, the following system of equations can be

established:
{

popt = γ c ,

P = γ ‖c‖1 ,
(5.12)

whose solution is given by:

popt = P
c

‖c‖1
. (5.13)
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5.4 Performance and complexity analysis

5.4.1 Analysis assumptions

The system consists of a single cell serving a certain number K of user groups. Among

these groups there are Kuc unicast groups, each containing one user, and Kmc multicast

groups, such that K = Kuc+Kmc. For simplicity, it is assumed that all multicast groups

have the same size, which is denoted by Nmc, only one subcarrier is allocated to each

group, and the number of available subcarriers is equal to the number of user groups,

i.e., F = K.

The users are uniformly distributed over one hexagonal sector of a tri-sectorized cell

and a single-antenna base station is located at the sector corner. The considered

propagation effects include the distance-based path-loss attenuation with exponent α =

3.5, as well as uncorrelated Rayleigh fading, which is modelled as a circularly symmetric

complex Gaussian random variable with variance σ2. The path-loss is modelled by

assuming that the cell border is at a distance rb = 1 from the base station and that the

fading variance of a user n with distance rn ≤ rb is given by σ2 = 1/rα
n [SL04]. Note

that the term cell border is used to refer to the corner of the hexagon directly opposite

to the corner in which the base station is located. Additive white Gaussian noise is

also assumed and the transmit power is adjusted to provide an average SNR of 10dB

at the cell border.

A simple subcarrier allocation (SSA) algorithm is implemented, which approximates

the maximization of the sum throughput given an equal power distribution. The con-

sidered algorithm iteratively allocates a subcarrier to each user group according to the

highest average group channel gain. After an allocation, the corresponding user group

and subcarrier are no longer taken into account by the further steps. The procedure is

repeated until one subcarrier is allocated to each user group.

The evaluation of the results considers two distinct system configurations. The first

one, denoted as system configuration SC1, represents a worst-case situation in which

the users have path-loss of the same order, with σ2 = 1, and no specific subcarrier

allocation algorithm is employed (random allocation). This scenario can be interpreted

as all users being close to each other. System configuration SC2, on the other hand,

takes into account the different path-loss of the users, with σ2 = 1/rα
n , as well as the

previously described SSA algorithm.
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5.4.2 Performance of the power allocation algorithms

This section presents the performance analysis of the proposed power allocation algo-

rithms in terms of the achievable throughput as well as the fairness among the users.

First, the relative performance among the sum throughput maximization algorithms,

namely STM and GCTM, is compared for different scenarios, then the FPA algorithm

is included and the absolute throughput achieved by all algorithms is analyzed, and

finally the algorithms are compared in terms of the worst-user SNR, which corresponds

to the fairness criterion.

In Section 5.3.3, the GCTM algorithm has been presented as an alternative to STM

for performing the sum throughput maximization, which consists of assuming a single

quality indicator for each subcarrier and applying the waterfilling algorithm. Different

group criteria can be taken into account, so that their impact is now analyzed.

The performance of GCTM is shown in Fig. 5.2 for the system configurations SC1

and SC2, with Kuc = Kmc = 2 and F = 4, and for some different functions f(Gf ),

which are namely: maximum (GCTM-Max), minimum (GCTM-Min), and arithmetic

mean (GCTM-Mean). The figure depicts the average sum throughput ratio between

the GCTM and STM algorithms, i.e., E{RGCTM/RSTM}, as a function of the multicast

group size Nmc. It is verified that the throughput ratio decreases with increasing Nmc.

This is due to the fact that, the more users there are within the multicast group, the

less representative the group metric becomes.

For configuration SC1, it can be seen that GCTM-Max is the algorithm which best

approximates the performance of STM. The performance gets worse for an increasing

group size, but is still close to 88% for Nmc = 20. The GCTM-Min presents the

worst result, while GCTM-Mean has an intermediate performance. The min function

is a rather inadequate criterion for GCTM, which is explained due to the fact that the

waterfilling algorithm may happen to allocate low power to a multicast subcarrier, since

the power is adjusted according to the worst user, even if there are other users with

very good channel gains which would significantly contribute to increase the average

throughput. By considering the mean instead of the min criterion, the power is better

distributed among the subcarriers, which leads to better sum throughput results. The

max criterion is even better than the mean criterion, since the waterfilling algorithm

tends to allocate more power to the subcarriers with users in very good conditions,

which contributes to increase the sum throughput.

For configuration SC2, the performance of the algorithms is improved with regard to

configuration SC1. This gain in performance is explained by the fact that configuration
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Figure 5.2. Sum throughput ratio between GCTM and STM for different group criteria,
for configurations SC1 and SC2, Kuc = Kmc = 2, and F = 4.

SC2 implements the subcarrier allocation algorithm SSA, instead of random allocation,

as well as the different path-loss perceived by the users. The relative performance of

the algorithms is similar to that of SC1, with the difference that the GCTM-Mean

and GCTM-Max present approximately the same performance. This is due to the fact

that, in the case of configuration SC2, the different path-loss of the users lead to a

large variance of the channel gains, which results in the average channel gain being

dominated by the largest values.

The cumulative distribution function (CDF) of the average user throughput is shown

in Fig. 5.3 for configuration SC2 and a group size of 10 users. The average is taken over

the throughput of the users of the multicast group, and each CDF sample corresponds

to a different channel realization. Note that the high throughput values are a result of

the large amount of multicast users, which have resource sharing capabilities. The STM

algorithm, as expected, presents the best average throughput results. The relative be-

havior among the GCTM and STM curves with regard to Fig. 5.2 is maintained, being

GCTM-Max and GCTM-Mean the ones which best approximate the STM algorithm,

for the same reasons previously discussed. Regarding the FPA algorithm, it presents

worse average throughput performance than the algorithms that aim at throughput

maximization, since it aims at providing fairness among the users. The fact that FPA

outperforms GCTM-min is explained by the inadequacy of the min criterion to the

purpose of maximizing the throughput, which has been previously discussed.
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Figure 5.3. CDF of the average user throughput of the different power allocation
algorithms for configuration SC2, Kuc = Kmc = 2, F = 4, and Nmc = 10.

In order to compare the degree of fairness of the different algorithms, the measure of the

worst-user SNR is employed, which corresponds to the lowest SNR perceived among

all users in all subcarriers. In Fig. 5.4, the average worst-user SNR is depicted as a

function of the multicast group size Nmc for the different power allocation methods. The

FPA algorithm presents the best performance in terms of fairness, as already expected,

and it presents a gain of roughly 5dB with regard to the GCTM-Max algorithm, which

is maintained throughout the whole group size range. When compared to Fig. 5.3, the

relative performance of the algorithms is the opposite, with FPA presenting the best

performance, then followed by the GCTM-Mean/GCTM-Max algorithms and then the

STM algorithm. This order inversion is due to the trade-off between performance and

fairness, i.e., when the sum throughput performance improves the fairness gets worse

and the other way around. The only exception is the GTM-Min algorithm, which due

to the previously discussed conflict of objectives between the min criterion and the

waterfilling algorithm, presents bad results in terms of both performance and fairness.

Fairness is an important aspect to be taken into account, especially for users of mul-

ticast services. In the case of error-tolerant hierarchical multicast [PS99,TZ01], it is

probably more advantageous to prefer the sum throughput maximization, since the

capacity can be maximized at the cost of a few users with low-quality audio/video

transmission. However, for services which do not tolerate errors, such as file download,
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Figure 5.4. Comparison of the different power allocation algorithms in terms of the
average worst-user SNR for configuration SC2, Kuc = Kmc = 2, and F = 4.

low quality users may compromise the throughput of all other users within the multi-

cast group, due to retransmission mechanisms [JLSX05], and therefore a fair algorithm

is certainly more adequate.

5.4.3 Remarks on complexity

In this section, the complexity of the STM algorithm is analyzed. The other algorithms

are not considered, because they either have a closed-form solution, in the case of FPA,

or their complexity is the same as that of traditional waterfilling [PF05], in the case of

GCTM. The FPA algorithm presents a rather low complexity, since it is not an iterative

algorithm and only a few operations are required for determining the power allocation

vector. Regarding GCTM, it requires at most F iterations, with each iteration also

requiring only a few operations. As for STM, it necessarily has a complexity higher

than that of GCTM, with both having the same complexity only for the case in which

Nmc = 1.

It has been shown in Section 5.3.2 that the allocation of power based on sum throughput

maximization can have its processing effort reduced by employing an algorithm similar

to the traditional waterfilling, which consists of iteratively testing the hypothesis that
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a certain subcarrier be allocated zero power. The advantage of this approach is the

reduction of both the power vector dimension and the range of the search space, which

results in decreased computational effort when searching for µ, cf. section 5.3.2.

In the following, it is analyzed to which extent it is expected that the effective power

vector length, i.e., the number of non-zero power elements within p, and the search

space be reduced when applying the hypothesis testing of section 5.3.2. The simulation

configuration SC1 is considered and among F allocated subcarriers the same number of

unicast and multicast groups is assumed, i.e., Kuc = Kmc = F/2, with each multicast

group being composed of three users, i.e., Nmc = 3.

In Fig. 5.5, the effective length of the power allocation vector is shown as a function

of the number F of allocated subcarriers for two different cases and considering the

STM algorithm. It can be seen that the absolute difference between the total number

F of subcarriers and the number of non-zero subcarriers increases for larger values

of F . For a small number F of subcarriers the difference is negligible, but for an

intermediate/large amount, the reduction of the effective power vector length leads to

significant gains in terms of processing effort.

The average ratio between the search space range for the cases with and without

hypothesis testing, which can be defined as E{(af̃ − af̃−1)/aF}, is shown in Fig. 5.6.

The ratio rapidly decreases as a few subcarriers are added. For more than 10 subcarriers

it can be seen that the hypothesis testing is capable of reducing the search space to

less than 5% of the total range.

Summarizing, the results of Figs. 5.5 and 5.6 show that the proposed enhancements

of the STM algorithm can provide a considerable reduction of the computational com-

plexity.



5.4 Performance and complexity analysis 111

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

All subchannels

Non−zero subchannels

Number F of allocated subcarriers

E
ff
ec

ti
v
e

le
n
gt

h
of

th
e

p
ow

er
al

lo
ca

ti
on

v
ec

to
r

Figure 5.5. Effective length of the power allocation vector for configuration SC1, STM
algorithm, Kuc = Kmc = F/2, and Nmc = 3.
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5.5 Considerations for SDMA scenarios

In SDMA scenarios, multiple multicast groups may share the same radio resource. The

motivation is to improve the resource efficiency, but at the cost of increased inter-group

interference. Such interference can be mitigated through the multi-group multicast

beamforming algorithms presented in Chapter 4.

The decision of which groups to assign to the same resources is expected to have a

significant impact on the performace. In the case of unicast users, several algorithms

have been proposed by previous works. The term “grouping criterion” is usually em-

ployed to describe the measure that quantifies the degree of compatibility among the

users, i.e., how efficiently can the interference among the users be mitigated when

they share the same resources. In [STKL01,FGH05,YG05], criteria based on the ac-

tual calculation of beamforming matrices are proposed for the unicast case, whereas

in [Cal04, SS04,MK06], lower-complexity correlation-based algorithms are considered

instead. The advantage of correlation-based algorithms is that the channel correlation

is an adequate measure for assessing the compatibility among users, while at the same

time avoiding the burden of calculating beamforming matrices for the different possible

user groupings.

In the case of multiple multicast groups, algorithms similar to the unicast case can be

employed as well. The difference is that the compatibility criterion now has to be calcu-

lated among all users of different multicast groups, since they are potential interferers.

In this case, a “group criterion” can also be taken into account, i.e., the different values

can be somehow combined. The derivation of such an allocation algorithm, however, is

not the focus of this section. The purpose of this discussion is to show that the sharing

of resources by different multicast groups, in spite of the more delicate compatibility

issue, still leads to better performances than isolating the groups in different resources.

For this matter, two allocation approaches are briefly analyzed in the following:

• MC|UC: This approach consists of separating the users according to their type

of service, i.e., Unicast (UC) and Multicast (MC) users are allocated to different

time or frequency resources. More specifically, a UC resource can have more than

one unicast user and an MC resource can have more than one multicast group.

This means that multicast beamforming and traditional unicast SDMA can be

employed separately on their respective resources.

• MC+UC: this corresponds to an allocation scheme which allows both unicast

and multicast users to share the same resources. The interference within a same
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resource is mitigated by multi-group multicast beamforming algorithms, such as

those presented in Chapter 4.

In order to evaluate the performance gains that an efficient grouping might provide in

terms of the quality of the worst-user, it is here considered that, among all possible

groupings, the one providing the highest worst-user throughput is selected. The inter-

ference mitigation is done by considering the MA-ZF algorithm described in Section

4.4.2.2. The simulation results consider an exhaustive group search, but other more

computationally efficient schemes, such as those previously mentioned for the unicast

case, can be employed instead.

Now, the performance of the two considered allocation strategies – MC+UC and

MC|UC – is compared. The MC+UC strategy refers to the case in which MC and

UC users may share the same resource, whereas for the MC|UC strategy the MC and

UC users are active in different resources. For both cases, a maximum of two resources

is assumed. The 10th percentile of the worst user throughput, among both MC and

UC services, assuming Gaussian signalling and an average Es/N0 of 10dB, is presented

in Fig. 5.7 as a function of the number of unicast users, while the number of multicast

users is fixed to 4. Since this is an SDMA scenario, a multi-antenna base station is

taken into account, which in this analysis is assumed to have 8 antenna elements. Note

that the throughput is normalized by the number of resources, i.e., divided by two in

this case, in order to capture the effect of the time/frequency-multiplexing.

It can be seen, as expected, that the throughput decreases with an increasing number

of users. The MC+UC case presents better capacity results than MC|UC for the whole

simulated range. For a low number of unicast users the advantage of MC+UC comes

from the fact that it is often able to accommodate the users in a single resource,

whereas MC|UC always requires two resources. For a higher number of unicast users,

the MC|UC strategy concentrates too many interfering users in a same resource, while

the other resource is occupied exclusively by the users of the multicast group. The

MC+UC, on the other hand, better distributes the users among the resources.

Even though these results correspond to a simplified scenario, they show that an ap-

propriate allocation that allows the sharing of resources is capable of improving the

performance of a multi-group multicast system.
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Figure 5.7. Comparison of different grouping strategies in terms of the worst-user
throughput, 8-antenna array, 4 multicast users.

5.6 Conclusions

In this chapter, the resource allocation problem has been analyzed for multi-carrier

multicast systems, with an emphasis on the power allocation problem. The following

power allocation algorithms have been proposed and investigated: sum throughput

maximization (STM), group criterion for throughput maximization (GCTM), and fair

power allocation (FPA). The first two aim at maximizing the sum capacity, while the

last one maximizes the minimum perceived SNR. Next, some of the main conclusions

are summarized:

• The solution of the STM problem has been presented, which depends on numer-

ical optimization, and an algorithm similar to the waterfilling hypothesis testing

has been proposed for reducing the processing effort. It has been shown that by

employing the hypothesis testing, both the effective power vector dimension and

the search space range can be significantly reduced, especially for a large number

of allocated subcarriers.

• The GCTM algorithm, which consists of a simplification of STM that employs a

group quality indicator per subcarrier, has been shown to provide a reasonable
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approximation of STM. The best group function was verified to be the maximum

channel gain. The performance of the GCTM-Max algorithm is degraded for

increased multicast group sizes, but up to an intermediate size it still achieves

roughly 90% of the STM performance.

• The fairness of the power allocation algorithms with regard to the worst-user

SNR has been compared. It was shown that FPA is able to provide a worst-user

SNR at least 5dB higher than the other algorithms, while the STM and GCTM-

Max had similar performances, but with the latter being slightly better for large

group sizes.

• With regard to the allocation of resources in SDMA scenarios, it has been shown

that appropriate allocation algorithms, which allow the sharing of resources by

unicast and multicast users, are capable of achieving better performance results

than algorithms which, for example, isolate unicast and multicast users in differ-

ent resources.
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Chapter 6

Conclusions

This thesis has dealt with the problem of multicast beamforming for multi-antenna

wireless cellular networks. Both single-group and multi-group scenarios have been

considered, with the former corresponding to a single multicast group per radio resource

and the latter referring to multiple multicast groups per resource.

In order to provide the necessary mathematical framework for the analysis of the al-

gorithms, a general system model has been proposed for the multi-group multicast

scenario in Chapter 2. Particular cases, such as the multi-user, single-group, and

single-user cases, can be derived from the general model by properly adjusting the

system parameters.

Different beamforming algorithms known from the unicast case have been formulated

for the single-group multicast case in Chapter 3. Moreover, a new algorithm called

User-Selective Matched Filter (USMF), which was specifically designed for the mul-

ticast case, has been proposed. The performance of the algorithms has been ana-

lyzed in terms of the uncoded Bit Error Rate (BER) and worst-user Signal-to-Noise

Ratio (SNR). The results have shown that USMF presents a good trade-off between

performance and complexity, outperforming the other algorithms originally proposed

for the unicast case and approaching the performance of a more complex algorithm

based on Semi-Definite Relaxation (SDR).

The multi-group multicast case allows multiple multicast groups in a same resource.

This resource sharing results in inter-group interference, which needs to be suppressed

by the beamforming algorithms. In Chapter 4, known algorithms from the unicast case

have been formulated for the multi-group multicast scenario. Additionally, these algo-

rithms were further modified with the purpose of improving the performance of the mul-

ticast services. These modified algorithms, which were termed Multicast-Aware (MA),

in most cases were based on a combination of null space projections and single-group

beamforming. In the case of the linear algorithms, the MA extension presents signif-

icant performance gains over the non-MA algorithms. For the non-linear algorithms,

however, the MA extension has a negative impact instead, which has been shown to

be due to the additional null space constraints or the reduced dimension of the symbol

vector, depending on the algorithm. The analysis of the results revealed that the best

trade-off between performance and complexity was achieved by the linear multicast-

aware SINR Balancing (SB) and Minimum Mean Square Error (MMSE) algorithms. It
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has been shown that the choice among these algorithms depends on the ratio between

the number of users and number of multicast groups.

Since the allocation of resources among the multicast groups is expected to have a

significant impact on the performance of the beamforming algorithms, this issue has

been addressed in Chapter 5. The analysis focuses on the proposal and evaluation of

alternatives for allocating the power among the subcarriers of a multi-carrier multicast

system. Different criteria, such as sum throughput maximization and user fairness, have

been considered by the algorithms. The throughput maximization algorithm is shown

to be an extension of the traditional waterfilling algorithm for the unicast case. For

this new algorithm, the hypothesis testing procedure can also be employed in order

to reduce the computational complexity. An algorithm based on a group criterion

has been proposed as well, which has been shown to achieve a reasonable trade-off

between performance and complexity. Additionally, some considerations have been

made with regard to the allocation of resources in SDMA scenarios. It has been shown

that, in spite of the inter-group interference, the sharing of resources among unicast

and multicast users provides better performance than isolating them into different

resources.

In summary, this thesis has provided a common framework for the analysis of single-

group and multi-group multicast beamforming. The algorithms have been proposed

with the purpose of improving the trade-off between performance and complexity, as

well as filling the gaps in the literature, while ultimately providing a set of beamforming

alternatives as complete as possible. Nevertheless, there are still several open issues

and problems to be investigated by further works in the area, such as: the impact of

imperfect channel knowledge on the performance of the algorithms, the extension to

Multiple Input Multiple Output (MIMO) scenarios, the proposal of efficient resource

allocation algorithms for multicast SDMA scenarios, among others.



119

Appendix

A.1 Considerations on the variance of THP-

precoded symbols

In this section, some aspects regarding the variance of THP-precoded symbols are

discussed. As shown in Section 3.4.4, the Tomlinson-Harashima precoding algorithm

generates a new symbol vector v, which depends on the modulo operator and the

feedback filter F.

The elements of v, due to the modulo operator, necessarily lie within the region M of

the complex plane delimited by the τ parameter. As stated in [Joh04], the complex

modulo operator mod(x) and the region M, respectively, are given by

mod(x) = x−
⌊

Re(x)

τ
+

1

2

⌋

τ − j

⌊

Im(x)

τ
+

1

2

⌋

τ , (A.1)

M = {x | − τ/2 ≤ Re(x) < τ/2 and − τ/2 ≤ Im(x) < τ/2} , (A.2)

where x ∈ C, τ ∈ R, ⌊·⌋ represents the floor operator, and Re(·) and Im(·) correspond,

respectively, to the real and imaginary parts of a complex number.

According to (3.41b) and (3.43b), it can be seen that the vector v depends on the

Cholesky decomposition L of the channel matrix H. For this reason, it is expected

that the channel propagation model has a certain impact on how the elements of v are

distributed within region M. This distribution determines the amount of energy that

is required in order to transmit vector v.

In [Joh04], a uniform area distribution is considered, which results in a variance σ2
v of

σ2
v = E{|v|2} − E{v}2 =

= E{Re(v)2}+ E{Im(v)2} − (E{Re(v)}+ jE{Im(v)})2 =
τ 2

6
,

(A.3)

where the individual terms were calculated based on the mean and variance of random

uniform variables [Pap91], assuming that both the real and imaginary parts of v are

uniformly distributed within [−τ/2, τ/2]:

E{Re(v)} = E{Im(v)} = (τ/2− τ/2)/2 = 0 , (A.4)

E{Re(v)2} = E{Im(v)2} = (τ/2 + τ/2)2/12 = τ 2/12 . (A.5)
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Fig. A.1 shows the distribution of v within the complex-plane for both the NLOS

and LOS channel scenarios. These figures are the result of a simple simulation con-

sidering 1,000 channel realizations, 4 single-antenna users, 4 transmit antennas, QPSK

modulation, and τ = 2
√

2.
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Figure A.1. Complex-plane distribution of the THP-precoded symbols.

It can be seen that the uniform assumption is in fact valid for the NLOS scenario.

Nevertheless, for the LOS scenario, the symbols present a different distribution, with

a larger concentration near the origin.

If the variance obtained by the uniform assumption is applied to the LOS channel,

very pessimistic results are achieved. The reason for this poor performance is that the

modulation matrix M is normalized assuming that the symbols require more energy

than they actually do. This false assumption leads to a waste of energy.

Since the calculation of σ2
v for the LOS scenario is not within the scope of this thesis,

the LOS THP simulations in Section 3.5 take into account the actual value of the

symbols, instead of their variance. This means that at each symbol time Rv = vvH

is calculated and the modulation matrix M is normalized accordingly. Even though

this methodology is not feasible in practice, it provides an upper bound on the THP

performance that would be achievable by calculating σ2
v and Rv appropriate to the

LOS scenario.
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A.2 Complexity of mathematical operations and

decompositions

In this section, the computational complexity of some general mathematical operations

and decompositions is presented, which are necessary for determining the complexity

order of the beamforming algorithms of Sections 3.4, 4.4, and 4.5.

Table A.1 shows the computational complexity of several mathematical operations in-

volving scalars, vectors, and matrices. The complexity is expressed in terms of the num-

ber of required complex multiplications, and the complexity order takes into account

the big O notation [GL96]. Divisions and square roots have the same complexity as a

multiplication, when they are efficiently implemented using Newton’s method [BV04],

and therefore are counted as such, whereas additions and subtractions are not consid-

ered. In [Hun07], a similar general complexity table is presented, which includes the

summations as well.

For the multiplication of triangular matrices, it is assumed that both matrices are

either lower-triangular or upper-triangular. The complexity of multiplying triangular

matrices of dimension L is demonstrated in [Hun07]. Alternatively, this can also be

demonstrated by showing that the number of required multiplications is numerically

equal to the Lth element of a sequence of tetrahedral numbers, which is given by

C(L + 2, 3) [Slo07], where C(n, k) is the number of k combinations from a set with n

elements.

In addition to Table A.1, the complexity of certain matrix decompositions is shown in

Table A.2. The algorithms applied for calculating the factorizations are described in

[GL96]. The Cholesky decomposition can be found either through the Gaxpy [GL96] or

the outer product [GL96] algorithms, which have both the same complexity order. The

eigenvalue decomposition is assumed to be calculated by the QR algorithm [GL96] with

Householder reductions [GL96]. The singular value decomposition takes the Golub-

Reinsch algorithm into account, but assuming that only the singular values and the

right singular vectors are calculated [Bjo96].
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Table A.1. Computational complexity of mathematical operations.

Operation Notation Number of

multiplications

Complexity

order

Multiplication ab 1 O(1)

Division a/b 1 O(1)

Square root
√

a 1 O(1)

Multiplication of vectors
(inner product)

a1×L bL×1 L O(L)

Multiplication of vectors
(outer product)

bL×1 a1×L L2 O(L2)

Multiplication of
vector and matrix

AL×M bM×1 LM O(LM)

Multiplication of
matrices

AL×M BM×N LMN O(LMN)

Multiplication of
diagonal matrices

AL×L BL×L L O(L)

Multiplication of
either lower or upper
triangular matrices

AL×L BL×L
1
6
L3 + 1

2
L2 + 1

3
L O(1

6
L3)

Gram matrix
generation

AL×M AH
M×L

1
2
L2M + 1

2
LM O(1

2
L2M)

Inversion of a
matrix

A−1
L×L L3 O(L3)

Inversion of a
diagonal matrix

A−1
L×L L O(L)

Inversion of a
triangular matrix

A−1
L×L

1
6
L3 + 1

2
L2 + 1

3
L O(1

6
L3)

Pseudoinverse of a full
row rank matrix

(AL×M)+ =
AH(AAH)−1

3
2
L2M + L3 + 1

2
LM O(3

2
L2M + L3)

Pseudoinverse of a full
column rank matrix

(AL×M)+ =
(AHA)−1AH

3
2
LM2 + M3 + 1

2
LM O(3

2
LM2 + M3)

Table A.2. Computational complexity of matrix decompositions.

Operation Notation Complexity order

Cholesky
decomposition

AL×L = LLH O(1
3
L3)

Eigenvalue decomposition
of a matrix

AL×L = QΛQ−1 O(5
3
L3)

Eigenvalue decomposition
of a symmetric matrix

AL×L = QΛQ−1 O(2
3
L3)

Singular value
decomposition

AL×M = UΣVH O(2LM2 + 4M3)
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List of Acronyms

ARQ Automatic Repeat Request

BD Block Diagonalization

BER Bit Error Rate

CDMA Code Division Multiple Access

CP Cyclic Prefix

DPC Dirty Paper Coding

FEC Forward Error Correction

FPA Fair Power Allocation

GCTM Group Criterion for Throughput Maximization

GSM Global System for Mobile communications

HLNP Hybrid Linear and Non-linear Precoding

IFFT Inverse Fast Fourier Transform

ILDP Iterative Least Distance Programming

ILS Integer Least Squares

ISD Iterative Spatial Diagonalization

KKT Karush-Kuhn-Tucker

LLL Lenstra-Lenstra-Lovász

LOS Line-Of-Sight

LP Linear Programming

LSI Least Squares with Inequality constraint

MA Multicast-Aware

MaxAvg Maximization of the Average SNR

MBMS Multimedia Broadcast/Multicast Service

MC Multicast
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MF Matched Filter

MIMO Multiple Input Multiple Output

MIMO-MU MIMO Multi User

MMSE Minimum Mean Square Error

MSE Mean Square Error

NLOS Non-Line-Of-Sight

NP Non-Polynomial time

NP-hard Nondeterministic Polynomial time hard

OFDM Orthogonal Frequency Division Multiplexing

P2M Point-to-Multipoint

P2P Point-to-Point

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

SB SINR Balancing

SDMA Spatial Division Multiple Access

SDP Semi-Definite Programming

SDR Semi-Definite Relaxation

SFB Switched Fixed Beams

SINR Signal-to-Interference plus Noise Ratio

SNR Signal-to-Noise Ratio

SQP Sequential Quadratic Programming

SSA Simple Subchannel Allocation

STM Sum Throughput Maximization

SVD Singular Value Decomposition

THP Tomlinson-Harashima Precoding
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UC Unicast

UMTS Universal Mobile Telecommunications System

USMF User-Selective Matched Filter

UTRAN UMTS Terrestrial Radio Access Network

VP Vector Precoding

WiMAX Worlwide interoperability for Microwave Access

WLAN Wireless Local Area Network

ZF Zero-Forcing
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List of Symbols

1 Vector of ones

argmax
x

y Returns the value of x that maximizes y

af Maximum µ achieved for pf = 0

a Auxiliary symbol vector at the transmitter or perturbation vector

a′ Auxiliary symbol vector at the transmitter or perturbation vector in
the reduced form

â Auxiliary symbol vector at the receiver

Ak Auxiliary dimension of null-space algorithms

Ai,j Element of A

A Subchannel allocation matrix

bn Index of group to which user n belongs

b Vector that associates which users belong to which group

BERi Average bit error rate for the ith channel realization

cf f th element of vector c

ci,i ith element of the main diagonal of C

c Inverse equivalent channel gain vector for the multicast group

C Non-zero diagonal matrix of the USMF algorithm

diag(·) Returns a diagonal matrix when the argument is a vector, or returns
a vector containing the elements of the main diagonal when the argu-
ment is a matrix

diagb(·) Returns a block diagonal matrix from another matrix based on the
definition of multicast groups

d Receive filter coefficient for the single-user unicast case

dn Receive filter coefficient associated to user n

dn Receive filter coefficients associated to user n for the MIMO case

D Receive filter matrix

e Base of the natural logarithm, also called Napier’s constant

eigv(·) Returns the unit-norm principal eigenvector of a matrix

E{·} Expectation operator

ei Vector corresponding to the ith column of the identity matrix

E Number of errors

Es/N0 Ratio of the symbol power to the spectral noise density

f Subcarrier index

f̃ Subcarrier iteration index
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F Number of subcarriers

F Feedback filter matrix of THP

F′ Feedback filter matrix of THP in the reduced form

F′
uc Feedback filter matrix of THP for all multicast users in the reduced

form

gf Group quality indicator of subchannel f

g′
f Equivalent channel gain for the multicast group in subchannel f

gk Size of multicast group k

Gn,f Element of G

g Vector of group sizes

G Normalized channel gain conditioned to the channel allocation

Gf f th column of matrix G

Gn Normalized Gram matrix of the channel of user n

G′
k Normalized Gram matrix of the equivalent channel of group k in the

reduced form

h Vector of channel coefficients for the single-user unicast case

hn Vector corresponding to the nth row of matrix H

hn nth row of matrix H

h(k,i) Vector of channel coefficients of the ith user within group k

Hn,l Channel coefficient between transmit antenna element l and user n

Hn,l(ν) Transfer function of the radio link between transmit antenna element
l and user n in the frequency domain

Hn,l,f Channel coefficient between transmit antenna element l and user n on
subcarrier f

H Matrix of channel coefficients

Hk Matrix of channel coefficients of group k

Hn Matrix of channel coefficients of user n

HPL Matrix of channel coefficients with included path-loss components

H(R) Regularized matrix of channel coefficients

H
(R)
k Regularized matrix of channel coefficients of group k

H
(eq)
k Equivalent matrix of channel coefficients of group k

H(uc) Matrix of channel coefficients of all unicast users

H Matrix of channel coefficients with only LOS components

Ȟ Matrix of channel coefficients with only NLOS components

H̃k Matrix of channel coefficients of all groups except k

I Identity matrix
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j
√
−1

J Matrix of ones

k Multicast group index

K Number of multicast groups

Kuc Number of unicast groups

Kmc Number of multicast groups

l Antenna element index

L(·) Lagrangian function

L Number of antenna elements at the base station

Lt Number of transmit antennas for the MIMO case

Lr Number of receive antennas for the MIMO case

L
(n)
r Number of receive antennas of user n for the MIMO case

L Lower triangular matrix that comes from the Cholesky factorization
of the channel

Ld Diagonal matrix containing the elements of the main diagonal of L

min
i

xi Returns the minimum xi for all possible indices i

min+
i

xi Returns the minimum non-zero xi for all possible indices i

ml Transmit filter coefficient associated to transmit antenna element l for
the single-group multicast case

ml,n Transmit filter coefficient associated to transmit antenna element l
and user n

m Transmit filter vector for the single-group multicast or single-user uni-
cast cases

mn Vector corresponding to the nth column of matrix M

m′
k Vector corresponding to the kth column of matrix M′

m
(eq)
k Equivalent beamforming vector obtained after applying single-group

beamforming to H
(eq)
k

Mo Modulation order

M Transmit filter matrix (also called beamforming matrix or modulation
matrix)

M′ Transmit filter matrix in the reduced form

M′
uc Transmit filter matrix of all unicast users in the reduced form

n User index

N Number of users

Nf Number of users within subcarrier f

NS Number of symbol intervals
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Nuc Number of unicast users

Nmc Number of users within multicast group

pf Power allocated to subcarrier f

pn nth element of power allocation vector

p′k kth element of power allocation vector in the reduced form

p Power allocation vector

p′ Power allocation vector in the reduced form

p′
PR Power re-allocation vector in the reduced form

pext Extended power allocation vector

P Total transmission power

Preq Required amount of power

P ′
i,j Element of P′

P′ Alternative feedback filter representation in the reduced form

qn nth element of vector q

q Uplink power allocation vector

Qn Uplink sum interference matrix of user n

rank(·) Rank of a matrix

rb Distance between base station and cell border

rn Distance between user n and the base station

r̃k Rank of matrix H̃k

R Throughput

Rn,f Throughput of user n in subcarrier f

r Vector with distance of all users to the base station

rk Received power vector of group k

Rs Signal covariance matrix

R′
s Signal covariance matrix in the reduced form

Rv Covariance matrix of the precoded data vector v for THP

s Data symbol for the single-group multicast or single-user unicast cases

ŝ Estimate of data symbol s for the single-user unicast case

sn Data symbol intended for user n

s′k Data symbol intended for group k in the reduced form

ŝn Estimate of data symbol sn

sn,f Data symbol intended for user n and mapped to subcarrier f

s Data symbol vector

seq Equivalent data symbol vector
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s′eq Equivalent data symbol vector in the reduced form

s′ Data symbol vector in the reduced form

ŝ Estimated data symbol vector

ŝeq Equivalent estimated data symbol vector

ŝ′eq Equivalent estimated data symbol vector in the reduced form

S Number of symbols

Si,j Element of matrix S

S ′
i,j Element of matrix S′

S Signal part matrix (SB algorithm)

S′ Signal part matrix in the reduced form (SB algorithm)

S̃k Diagonal matrix resulting from the SVD of H̃k

tr(·) Trace of a matrix

t Transformation vector for the single-group multicast case

t+ Pseudoinverse of t for the single-group multicast case

t+
n Vector corresponding to the nth row of matrix T+

Tf Frame duration

Ts Symbol time

T Transformation matrix that relates the reduced and complete forms

T+ Right pseudoinverse of matrix T

un nth column of matrix U

u′
k kth column of matrix U′

U Unit-norm beamforming matrix

U′ Unit-norm beamforming matrix in the reduced form

Ũk Unitary matrix resulting from the SVD of H̃k

Ṽ
(0)
k Matrix of right singular vectors resulting from the SVD of H̃k

Ṽ
(1)
k Matrix of left singular vectors resulting from the SVD of H̃k

v Data vector after the feedback filter for THP

wi ith beamforming vector of the set of fixed beamformers

xl Signal transmitted by antenna element l

xl(ν) Signal transmitted by antenna element l in the frequency domain

xl,f Signal transmitted by antenna element l on subcarrier f

x Data symbol vector after transmit processing

X Matrix to be optimized by the single-group multicast SDR algorithm

yn Signal received by user terminal n

yn(ν) Signal received by user terminal n in the frequency domain
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yn,f Signal received by user terminal n on subcarrier f

y Estimate of data symbol vector before receive processing

z Additive white Gaussian noise for the single-user unicast case

zn Additive white Gaussian noise of user n

zn(ν) Additive white Gaussian noise of user n in the frequency domain

zn,f Additive white Gaussian noise of user n on subcarrier f

z Additive white Gaussian noise vector

zn Additive white Gaussian noise vector of user n for the MIMO case

α Path-loss exponent

β Energy normalization factor

γ SNR value

γn SNR or SINR of user n

γeq Equivalent SNR or SINR

γtgt SNR or SINR target

γmax Maximal SNR or SINR value

γmin(C) Worst-user SNR given a certain matrix C for the USMF algorithms

δ Antenna spacing in wavelengths

θ Angular direction of the user

κ Rician factor

λmax Dominant eigenvalue of the power allocation problem (SB algorithm)

µ Lagrange multiplier

ν Frequency

νf Lagrange multiplier

ν Vector of Lagrange multipliers

ρi,j Correlation between the vector channels of users i and j

σ2
s Average symbol power

σ2
v Average power of the THP precoded symbols

σ2
z Average noise power

τ THP parameter for delimiting the complex plane

Γ Power loading matrix

Λ Matrix of Lagrange multipliers

Υ Extended coupling matrix

Υ′ Extended coupling matrix in the reduced form

Υ(ul) Extended uplink coupling matrix

Ψi,j Element of matrix Ψ
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Ψ′
i,j Element of matrix Ψ′

Ψ Interference part matrix (SB algorithm)

Ψ′ Interference part matrix in the reduced form (SB algorithm)

B Set of indices of available switched fixed beams

Bg Set of beam indices requested by the group of users

F Set of all subchannel indices

Nk Set that contains the indices of users belonging to group k

O(·) Complexity order of the argument

C Set of complex numbers

R Set of real numbers

Z Set of integer numbers

(·)T Transpose of a vector or matrix

(·)H Conjugate transpose of a vector or matrix

(·)∗ Conjugate of a scalar, vector, or matrix

(·)+ Pseudoinverse of a vector or matrix

(·)−1 Inverse of a square matrix

| · | Absolute value of a scalar

|| · || Euclidean norm or 2-norm of a vector

|| · ||1 1-norm of a vector
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Studienabschluß: Bachelor of Engineering

2002-2003 Studium der Elektrotechnik an der
Federal University of Ceará, Fortaleza, Brasilien,
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