Inter-Cell Interference Mitigation in Cellular Networks Applying Grids of Beams

Christian Müller c.mueller@nt.tu-darmstadt.de

The Talk was given at the meeting of ITG Fachgruppe "Angewandte Informationstheorie", Berlin, Germany, Oct. 2008.

Resource Blocks

Which beams shall be used on a time-frequency unit?

Overview

- System concept: grids of beams in cellular network
- Design of grids of beams
 - Problem of interference mitigation: objective function and constraints
 - Low complex algorithm for interference mitigation
- Simulation results
- Conclusion

System Concept

preamble phase

R. Grünheid, H. Rohling, K.Brüninghaus, "Self-Organized Beamforming and Opportunistic Scheduling in an OFDM-based Cellular Network", Proc. VTC 2006, Melbourne Australia, April 2006.

System Concept

preamble phase feedback phase

SINR values:

- each resource block
- each user

R. Grünheid, H. Rohling, K.Brüninghaus, "Self-Organized Beamforming and Opportunistic Scheduling in an OFDM-based Cellular Network", Proc. VTC 2006, Melbourne Australia, April 2006.

System Concept

2 October, 2008 | Christian Müller | Communications Engineering Lab

Cellular Network", Proc. VTC 2006, Melbourne Australia, April 2006.

Multi-Cell Environment

Design of Grids of Beams

approach in literature:

- filter design
- group beams such that inter-beam interference is avoided → comb-like manner
- use grid of beams serving more users more often

idea:

- design grid of beams for each time-frequency resource such that
 - inter-cell interference is avoided
 - beams serving more users are applied more often

Problem Formulation

Demand of Beams

- preference:
 - from estimation of angle of arrival or
 - from tracking SINR values
- aims at
 - good coverage
 - high signal power at receiver
- sum of demands is given by number of timefrequency units and beams in a grid of beams
- no preference known
- \rightarrow use each beam same often
- preference known
- \rightarrow use beam proportional to traffic in its direction
- demand of a beam is time-variant

Interference of a Beam

for each pair of beams:

average interference $I_{(t',b')}^{(t,b)}$ in sector depending on

- path loss
- antenna pattern
- user distribution (probability density function)

Note: Average interference is quasi time-invariant.

Interference Matrix

constraints:

- each grid of beams consists of same number of beams
- each beam is used as often as demanded
- elements of ${\bf u}$ are equal to 0 or 1

 \rightarrow integer program which is NP-hard

Evaluation Parameters

Parameter	Value	
bandwidth	5 MHz	
number of subcarriers	128	
power BS	35dBm	beam with main lobe at 0°
noise power	-102 dBm	
antennas BS	uniform circular array, 12 elements	-10
main lobe direction	0°, 30°, 60°,, 330°] m -20
beam type	Chebyshev, 20 dB side lobe attenuation	
size of grid of beams	2	
channel model	Winner Channel Model C2 NLOS	-50
number of cells	7	
cell radius	200m	-60 -150 -100 -50 0 50 100 150 Angle of departure in degree
scheduler	Max-Min	

Benchmark Method

comb-like manner of grid of beams:

subcarrier	1	2	3	4	5	6	7	
1st beam	0°	30°	60°	120°	150°	180°	0°	
2nd beam	90°	300°	330°	210°	270°	300°	90°	

Data Rate of User for 8 Users in Cell

Minimum Data Rate of User in Cell

- grid of beams as a robust alternative to beamforming requiring full channel state information
- dynamic design of grids of beams considering
 - demand of a beam
 - inter-cell interference
- formulation of optimization problem including definition of an objective function
- presentation of an algorithm improving performance of a network by dynamic design of grids of beams