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Abstract— Space Division Multiple Access (SDMA) is a promis-
ing solution to improve the spectral efficiency of future mobile
radio systems. However, finding the group of MSs that maximizes
system capacity using SDMA is a complex combinatorial prob-
lem, which can only be assuredly solved through an Exhaustive
Search (ES). Because an ES is usually too complex, there
are several sub-optimal SDMA grouping algorithms to solve
this problem. Such algorithms, however, usually depend on the
precoding matrices of candidate SDMA groups and are also con-
siderably complex. In this work, an SDMA grouping algorithm is
proposed for the downlink of multi-user multiple input multiple
output systems. It is based on the spatial correlation and gains
of the MSs’ channels in the SDMA group, thus not depending on
precoding and having low complexity. The proposed algorithm
is formulated as a convex quadratic optimization problem and is
efficiently solved by convex optimization methods. It is analyzed
considering zero-forcing precoding and it is shown to almost
achieve the performance of an ES for the SDMA group that
maximizes the system capacity.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) techniques are a

promising solution for high throughput provision in future mo-

bile radio systems [1]. In the downlink of Multi-User MIMO

(MU-MIMO) systems, if Channel State Information (CSI) is

available at the transmitter, a group of Mobile Stations (MSs)

can be multiplexed in space using Space Division Multiple

Access (SDMA) in order to improve spectral efficiency. In the

following, such a group of MSs is termed an SDMA group.

The MSs in an SDMA group share the same resource in

frequency and time while being separated in space, e.g., using

a MIMO precoder such as the transmit Zero-Forcing (ZF)

precoder [2,3]. Through SDMA, the system can serve more

MSs without needing extra radio resources and, therefore, its

spectral efficiency can be increased. Indeed, if MSs’ spatial

channels are close to orthogonal, SDMA gains are obtained by

placing MSs in the same SDMA group. Oppositely, placing

MSs with spatially correlated channels in the same SDMA

group can even lead to spectral efficiency losses. MSs with

correlated channels must belong to different SDMA groups,

which are multiplexed on different resources in frequency or

time. Therefore, the SDMA grouping algorithm must deter-

mine whether MSs are spatially compatible, i.e., whether they

can efficiently share the same radio resource through SDMA.
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The problem of finding the SDMA group that maximizes

the system capacity is a complex combinatorial problem. It

is similar to the well-known knapsack problem and is a

Non-deterministic Polynomial time Complete (NPC) problem

[4]–[6]. Its optimum solution is assuredly found through an

Exhaustive Search (ES). However, an ES has exponential com-

plexity and can reach prohibitive computational cost even for

a moderate number of MSs. Indeed, having the SDMA group

capacity as grouping metric requires to compute precoding

matrices in order to compare different candidate groups, thus

increasing the complexity of each step in the ES. Therefore,

sub-optimal SDMA algorithms able to find an efficient SDMA

group with reduced complexity are attractive.

Two relevant aspects can then be identified in order to

design an efficient SDMA grouping algorithm with acceptable

complexity:

1. A metric with low complexity should be considered in

order to determine whether MSs pass in the same SDMA

group and to compare the performance of different groups.

Herein, such a metric is termed grouping metric.

2. An algorithm is required to find an SDMA group that

maximizes (or minimizes) the grouping metric without

needing to compare all the possible SDMA groups, thus,

avoiding the ES. Herein, such an algorithm is termed

SDMA algorithm.

The above discussion has been concerned with finding the

SDMA group that maximizes the system capacity. However,

the two sub-problems above are much more general and apply

for many different grouping metrics, i.e., different optimization

objectives. The best SDMA group is the one optimizing the

group metric.

Several sub-optimal SDMA grouping algorithms that fit into

this framework are proposed in the area. For example, in [5]

the Signal-to-Interference plus Noise Ratio (SINR) margin,

defined as the minimum difference between the expected

and the target SINR of the MSs in an SDMA group, is

used as grouping metric. Therein, several heuristic SDMA

algorithms are proposed, such as the First Fit (FF) and Best

Fit (BF) algorithms. Considering for example FF, the best

SDMA group is built by sequentially adding MSs to an SDMA

group as long as the SINR margin is kept non-negative. In

[7], group capacity and the average Signal-to-Noise Ratio

T. F. Maciel and A. Klein, “A convex quadratic SDMA grouping algorithm based on spatial correlation,” IEEE International Conference on Communications
(ICC 2007), 24-28 June 2007, Glasgow, Scotland, (accepted for publication).



(SNR) are used as grouping metrics while a tree structure

is employed by the SDMA algorithm in order to avoid an

ES. In [8], the best SDMA group is built by selecting G
channels among the available ones in order of singular values.

The sum of the singular values is the grouping metric and the

SDMA algorithm avoids the the ES by simply selecting the

channels with highest singular values, thus disregarding spatial

compatibility among the channels.

In [5,7,8], the considered grouping metrics depend either on

precoding matrices, such as group capacity, SNR, and SINR,

or on a complex operation, such as the sum of the singular val-

ues which requires the Singular Value Decomposition (SVD)

of MSs’ channels.

In [9], a grouping metric based on the spatial correlation is

computed for every pair of MSs and the best SDMA group

is selected as the group containing G MSs, with Gmin ≤
G ≤ Gmax, and having the minimum sum of the grouping

metric for all pairs of MSs in the group. In this case, however,

selection is done on a user basis, channel gains are not

explicitly considered in the grouping metric and, in spite of

having a limited number of candidate groups, the SDMA

algorithm searches exhaustively for the best SDMA group.

In [9], for a selection on a channel basis, the SVD of MSs’

channels is also required.

In [10], a grouping metric based on the spatial correlation

is considered and the search for the best SDMA group is

performed by heuristic SDMA algorithms similar to the FF

and BF SDMA algorithms in [5].

The spatial correlation among channels is easily computed

and does not depend on precoding matrices [4]. Therefore,

designing a grouping metric based on the spatial correlation,

as in [9,10], can save computational costs while being con-

siderably efficient. Additionally, channel gains should also be

taken into account, as in [10], in order to enhance the overall

performance of the SDMA grouping algorithm.

In this work, a new SDMA grouping algorithm is proposed

for the downlink of MU-MIMO systems. The algorithm has

the following attractive properties:

• It uses a new grouping metric, which is a function of the

spatial correlation among the MSs’ channels in the SDMA

group, as well as of the MSs’ channel gains. It is efficient,

low complex, and depends neither on precoding matrices,

as do [5,7], nor on a complex operation, as the SVD in

[8,9]. Differently from [8], spatial compatibility is suitably

taken into account. In contrast to [10], it allows to control

the importance given to spatial correlation and to channel

gain.

• The SDMA algorithm is formulated as a convex quadratic

optimization problem, which can be efficiently solved by

convex optimization methods [11]. It requires neither ex-

haustive searches, as that in [9], nor heuristic searches,

as those in [5,7,10]. It works on a channel basis without

incurring in excessive extra complexity, differently from [9].

The proposed SDMA grouping algorithm is analyzed con-

sidering ZF precoding and its performance is compared with

an ES having the SDMA group capacity as grouping metric.

In section II, the adopted system model is described. In

section III, the proposed SDMA algorithm is presented. Its

performance is analyzed in section IV. Finally, in section V

conclusions are drawn.

II. SYSTEM MODEL

This work focuses on the downlink of a MU-MIMO system.

Without loss of generality, a single Base Station (BS) sector is

considered in the problem modeling. The sector is equipped

with an Antenna Array (AA) having nT elements. A total

number of K active MSs are located in the sector and each

MS k has an AA with nRk elements.

In the sector a single frequency channel is considered, which

is shared in space by MSs in an SDMA group. The channel

response is assumed to be flat and perfect CSI is considered

at the transmitter. This scenario can be seen as a single sub-

carrier, or a chunk of adjacent sub-carriers [12] for which

a single sub-carrier is a good representative, in a system

using Orthogonal Frequency Division Multiplexing (OFDM),

Time Division Duplexing (TDD), and having perfect channel

estimation at the BS.

Interference arriving from other sectors is assumed to be

Gaussian distributed and is directly incorporated as part of the

Gaussian noise in the system.

Each link between the BS sector and an MS k has an

associated channel matrix Hk ∈ C
nRk×nT , which is known

at the BS. Let nR =
∑K

k=1
nRk denote the total number of

receive antennas in the sector and (·)T
denote vector or matrix

transposition. Then, the channel matrix H of all MSs in the

sector can be written by stacking the channel matrices Hk as

H =
[

H
T
1 H

T
2 . . . H

T
K

]T ∈ C
nR×nT . (1)

Each row hi ∈ C
1×nT , i = 1, . . . , nR of H is a vector

channel that can be selected for transmission using SDMA.

Considering this scenario, the SDMA grouping problem

corresponds to building a group G containing a total number

of G ≤ nT vector channels optimally selected among all the

nR ones existing in the sector, i.e., to optimally select G rows

of H.

In this sector, the BS transmits the data symbols sg, g =
1, . . . , G to the MSs in the group G. The data symbols sg

are assumed to be uncorrelated with average power σ2
s = 1

and are organized in the input data vector s ∈ C
G×1. This

vector is modulated using the modulation matrix M ∈ C
nT ×G,

transmitted through the SDMA group channel G ∈ C
G×nT ,

and distorted by noise, which is represented by n ∈ C
G×1

and is considered to be spatially white with spectral density

power σ2
n. The received signal is demodulated using the de-

modulation matrix D ∈ C
G×G producing at the receivers the

estimated output data vector of the transmitted data symbols

ŝ = D(GMs + n) ∈ C
G×1, (2)

as illustrated in Fig. 1.

The model in (2) encompasses the signals of all the MSs in

the SDMA group G under consideration. Since the demodula-

tion process is distributed among the MSs, D can be written
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Fig. 1. Transmission chain.

in a diagonal form (or block diagonal form, if MSs have

multiple antennas), decoupling signals received by different

MSs. Both matrices M and D in (2) are defined according to

the precoding technique used in the system.

Let (·)H
denote the conjugate transpose of a matrix and I

an identity matrix of suitable dimension. Then, using (2) and

(6), the group capacity C of the SDMA group G is given by

C = log2

(

det
(

I + σ−2
n DGM(DGM)

H
))

, (3)

which will be used in order to calculate the system spectral

efficiency.

The spatial correlation between two vector channels hi and

hj is measured by the normalized scalar product ρij [4,5,13].

Denoting the absolute value of a complex scalar and the l2-

norm of a vector by |·| and ‖·‖
2
, respectively, ρij is given

by

ρij =
∣

∣hih
H
j

∣

∣

/(

‖hi‖2
‖hj‖2

)

(4)

Let diag {·} denote a diagonal matrix whose diagonal

elements are given as arguments. Then, using (1) and (4), it is

possible to write a real non-negative matrix R ∈ R
nR×nR

+

containing the correlation coefficient ρij for every pair of

channels hi and hj as

R =
∣

∣NHH
H
N

∣

∣ , with (5a)

N = diag
{

‖h1‖−1
, ‖h2‖−1

, . . . , ‖hnR
‖−1

}

, (5b)

where |·| is applied to R element-wise. In the next section, R

is used as input for the proposed SDMA grouping algorithm.

ZF precoding, which a simple and linear precoding tech-

nique, is considered in this work. Other precoding techniques

could however be considered [2]–[4]. Let ‖·‖F denote the

Frobenius norm of a matrix. Then, the modulation and de-

modulation matrices in (2) become, respectively,

M =
√

PG
H

(

GG
H

)−1
/∥

∥

∥
G

H
(

GG
H

)−1
∥

∥

∥

F
and (6a)

D = I, (6b)

where P is the available transmission power.

III. SDMA GROUPING ALGORITHM

A. General problem

In this section, the general SDMA grouping problem is

briefly discussed. In general, finding the SDMA group that

optimizes a given group metric is a selection problem. It

corresponds to select G, with 1 ≤ G ≤ nT , channels from a

total number of nR vector channels as to optimize the grouping

metric. This problem is combinatorial and hard to solve.

Since the number of active MSs and, consequently, the total

number of receiving antennas in the sector is usually much

larger then the number of transmit antennas (nR ≫ nT ),

searching for the best SDMA group by evaluating and compar-

ing the grouping metric for every possible SDMA group can

become prohibitively complex even for small values of nR.

This happens, e.g., if the maximization of the throughput of

the system is pursued, which requires to compute the group

capacity according to (3) for
∑nT

g=1

(

nR

g

)

groups. When nR

increases, the computational cost of this approach increases

exponentially and it becomes rapidly unfeasible.

In the above problem, the complexity of the SDMA algo-

rithm is directly affected by the precoding technique used. By

using ZF precoding [2]–[4], which is a simple linear technique,

a lower computational cost can be achieved by the algorithm

compared to more sophisticated precoding techniques, such

as Block Diagonalization [14]. However, performance losses

are expected. By assuming a fixed SDMA group size G, the

problem can also be simplified. In this case, only
(

nR

G

)

groups

must be compared. However, performance can be degraded if

G does not match the optimum SDMA group size G⋆ and,

moreover, there is no fixed rule to determine G⋆ a priori.

B. Regularized Correlation-Based Algorithm (RCBA)

In this section, a sub-optimal SDMA grouping algorithm

named Regularized Correlation-Based Algorithm (RCBA) is

proposed. It is formulated as a convex optimization problem

based on the spatial correlation among MSs’ channels, thus

avoiding an ES and not needing to compute precoding matri-

ces. ZF precoding and a given group size G are assumed. The

choice of the SDMA group size G is discussed in the next

section.

Under ZF, SDMA groups containing correlated channels

result into poor performance in terms of group capacity [15].

With ZF, however, building an SDMA group whose channels

are as uncorrelated as possible represents an effective sub-

optimal approach. The SDMA group of size G with minimum

total correlation, i.e., whose sum of the spatial correlation

values between every pair of vector channels in the SDMA

group is minimal, represents a good solution.

Using (5), the SDMA group with minimum total correlation

can be found by solving the following integer optimization

problem:

x
⋆ = arg min

x

{

1

2
x

T
Rx

}

, (7a)

s.t.: 1
T
x = G, (7b)

xi ∈ {0, 1}, i = 1, . . . , nR, (7c)

where x =
[

x1 x2 . . . xnR

]T
is a binary selection vector

and 1 is a nR×1 vector of ones. If x
⋆ is the optimum solution

of (7), the optimum SDMA group G⋆ corresponds to select the

rows hi of H for which x⋆
i = 1, i = 1, . . . , nR.

The problem in (7) is still combinatorial and can be solved

by evaluating the cost function at the
(

nR

G

)

values of x and

selecting the one with minimum cost. However, when nR
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increases, complexity still grows exponentially.

Avoiding this exponential complexity increase is desired

here. This is accomplished by relaxing the constraint (7c) to

allow continuous values for xi, which is replaced by x̃i ∈
[0, 1]. The factor 1/2, which does not affect the optimization,

was also removed from (7a). Then, (7) is rewritten as

x̃
⋆ = arg min

x̃

{

x̃
T
Rx̃

}

, (8a)

s.t.: 1
T
x̃ = G, (8b)

x̃i ∈ [0, 1], i = 1, . . . , nR, (8c)

which is a convex quadratic problem with linear constraints.

Since R is positive definite in the feasible set of (8), the

problem can be efficiently solved, i.e., with non-exponential

complexity, using convex optimization [11].

The optimum solution x̃
⋆ of (8) is non-integer and its

components x̃⋆
i can be interpreted as the probabilities of the

corresponding channels being in the optimum SDMA group

G⋆. In order to convert x̃
⋆ into an integer solution, their G

largest components are simply set to 1 and the other nR − G
components to 0. Nevertheless, more sophisticated rounding

strategies could be applied [6]. In spite of not being necessarily

the optimum solution for (7), x̃
⋆ often coincides with x

⋆.

The performance of (8) can be improved in terms of capac-

ity by formulating a regularized version for it. Regularization

is a common scalarization method used to solve multi-criterion

problems [11]. Because group capacity depends not only on

the spatial correlation among the channels, but also on the

channel gains, the idea is to introduce a second term in (8) to

favor SDMA groups whose channels have high gains. The

optimization problem of the Regularized Correlation-Based

Algorithm (RCBA) is formulated as

x̃
⋆ = arg min

x̃

{

(1 − α)

‖R‖F

x̃
T
Rx̃ + α

‖Nx̃‖
1

‖N‖F

}

, (9a)

s.t.: 1
T
x̃ = G, (9b)

x̃i ∈ [0, 1], i = 1, . . . , nR, (9c)

where ‖·‖
1

is the l1-norm of a vector and 0 ≤ α ≤ 1 is

a weighting factor. For α = 0, (9) is equivalent to (8), and

by increasing α towards 1, channels with higher gain become

more and more preferential.

Note that (9) can be modified in order to take MSs’ priorities

into account. In RCBA, the constraint

x̃c = 1, c ∈ [1, nR] (10)

can be added to (9) in order to force a high priority MS

channel, indexed here by c, to be present in the SDMA group.

Computing R and evaluating the cost function in (9a)

roughly require O
(

nT n2
R

)

and O
(

n2
R

)

operations, respec-

tively. RCBA complexity is therefore roughly of O
(

n2
R

)

,

assuming nR ≫ nT , which is much lower than that of the

ES in section III-A, which is roughly of O (2nR).

C. Sequential Removal Algorithm (SRA)

In the previous section, RCBA is proposed assuming a

fixed SDMA group size G. In this section, a Sequential

Removal Algorithm (SRA) is proposed to adjust the size of the

SDMA group obtained by solving (9) and to compensate for

possible mismatches between G and the optimum group size

G⋆. Because a larger group does not necessarily imply better

performance, at each step of the SRA, G is reduced by one

by removing the channel having the highest total correlation

with respect to the other channels in the SDMA group. This

is a simple strategy, but more sophisticated algorithms could

also be applied [4].

1. Apply RCBA with an initial fixed group size G ≤ nT and

generate G.

2. Compute the group capacity C of G using (3).

3. Define C⋆ = C and G⋆ = G.

4. While the size of G > 1

a. Generate the correlation matrix RG for G using the data

in R, given by (5).

b. Define G = G \ {arg max
g

RG1}, with g ∈ {1, . . . , G}.

c. Compute the group capacity C of G using (3).

d. If C > C⋆, define C⋆ = C and G⋆ = G.

Since C is not necessarily monotonic in G, all the SDMA

group sizes are considered in step 4. Note that SRA can

be modified to ensure that a given high priority MS be

never removed from the SDMA group in the step 4b. In the

following, SRA is used with RCBA to improve its performance

compared with RCBA using a fixed group size.

IV. SIMULATION RESULTS

Simulations considering one sector with an Uniform Linear

Array (ULA) having nT = 4 or 8 elements are performed

to assess the performance of the RCBA. A total number of

K = 16 active single-antenna MSs are randomly placed in

the sector. MSs’ priority management is not considered.

MSs’ channel matrices Hk are obtained using

Hk =
√

KR/(1 + KR)H +
√

1/(1 + KR)Hw (11)

where KR is the Rice factor, and H and Hw are the Line-Of-

Sight (LOS) and Non-LOS (NLOS) channel components, re-

spectively [15,16]. The NLOS component of (1) has zero-mean

circularly symmetric complex Gaussian components. NLOS

and LOS scenarios are considered, in which KR = −∞ and

KR = 10 dB, respectively. In LOS scenario, MSs’ channels

become strongly correlated if the angular separation among

the MSs is small. Slow fading and path loss are assumed to

be ideally compensated by power control and only the fast

fading is considered. Group capacity is calculated using (3).

The most relevant simulation parameters are summarized in

Table I.

First, it is investigated how close the total spatial correlation

of the solution obtained by RCBA is to that of the optimum

solution of (7) found by checking all possible SDMA groups

of fixed size G. In Fig. 2, the Cumulative Distribution Function

(CDF) of the quotient between the total correlation of the

SDMA groups obtained by RCBA with α = 0 and by (7) is

shown. Whenever this quotient is equal to 1, RCBA matches

the optimum solution of (7). This happens in over 60% of the
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TABLE I

SIMULATION PARAMETERS.

Parameter Value

Scenario NLOS (KR = −∞ dB), LOS (KR = 10 dB)

Communication link Downlink

# of active MSs 16

User distribution Uniform

Propagation Fast fading only

Channel response Flat

# of sub-carriers 1

Sector antenna ULA with nT = 4 or nT = 8 (half
wavelength element separation)

MS antenna Single antenna

Average SINR 10 dB

SDMA algorithms RCBA with fixed group size, RCBA with
SRA, ES

Precoding ZF according to (6)

Signaling Gaussian

cases for both the NLOS and LOS scenarios. In over 90%

of the cases, the described quotient is no larger than 1.05

showing that the solution of RCBA approximates very well

the optimum solution of the problem (7).

Now, the system capacity achieved by using RCBA is

compared to that one achievable through ES. Comparisons are

performed considering the capacity that the system achieves

in 90% of the cases, named here C90 capacity, and which

corresponds to the well-known 10% outage capacity of the

system. Fig. 3 shows, for different values of α, the ratio

between the C90 capacity obtained by applying the RCBA

normalized with respect to that obtained by means of the ES,

i.e., C90,RCBA/C90,ES . In the ES, the group with maximum

capacity is found by comparing all possible SDMA groups.

Capacity values are determined using (3).

In Fig. 3(a), the performance of RCBA with fixed group size

G = nT can be observed. For G = nT = 8, the normalized

capacity figures are below 20% of the optimum obtained by

means of the ES. The C90,ES corresponds to 19.6 bps/Hz and

21.3 bps/Hz in the NLOS and LOS scenarios, respectively.

On the other hand, for the case in which G = nT = 4 and

considering 0 ≤ α ≤ 0.3, capacity figures of at least 70%

of the optimum capacity are achieved. In this case, C90,ES

corresponds to 11.9 bps/Hz and 12.7 bps/Hz in the NLOS

and LOS scenarios, respectively. The better performance when

nT = 4 transmit antennas are considered is due to the fact that

a value of G = 4 is a much better suited SDMA group size

in this case than G = 8 in the case with nT = 8 transmit
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Fig. 3. C90 capacity of the RCBA normalized with respect to C90 of the
ES: C90,RCBA/C90,ES . NLOS: KR = −∞ dB. LOS: KR = 10 dB.

antennas. For G = nT = 8, some incompatible MSs are often

included in the SDMA group, which causes the group capacity

to be low.

Because the optimum group size G⋆ cannot be predicted, the

selection of G has a considerable impact on the performance

of RCBA. This impact can be seen in Fig. 3(a) by comparing

the curves for G = nT = 8, indicated by squares, with the

curves for G = 6 and nT = 8, indicated by triangles. It can be

seen that the performance obtained by RCBA with the group

size G = 6 is much better than with G = 8.

Applying the RCBA for every group size 1 ≤ G ≤ nT and

selecting the best SDMA group among the obtained ones is

an alternative to overcome the group size problem. However,

it is more complex than considering the proposed SRA. In

Fig. 3(b), RCBA with SRA is considered, which adapts the

SDMA group size. In this case, SRA tests G = nT groups and

selects the best among them, thus resulting in a considerable

improvement of the capacity figures. In fact, with SRA, the

capacity figure obtained by RCBA can reach up to 95% of the

capacity of the ES. Moreover, over 70% of the capacity of the

ES is achieved for all values of α.

It can also be noted that setting G = nT and using SRA to

adjust the group size, as in Fig. 3(b), provides better capacity

figures than using the fixed group sizes assumed in Fig. 3(a).

Nevertheless, it incurs in extra complexity due to SRA.

It can be seen in Fig. 3(b) that, by varying α, the per-

formance of the RCBA with SRA can be improved by 22%

in the NLOS scenario with nT = 4 transmit antennas when

compared with α = 0. RCBA with α = 0 corresponds

to the non-regularized case in (8). In the NLOS scenario,

spatial correlation and channel gain have comparable roles

and the best capacity figures are obtained for α = 0.5. For

the scenarios considering nT = 8 transmit antennas, the gain

T. F. Maciel and A. Klein, “A convex quadratic SDMA grouping algorithm based on spatial correlation,” IEEE International Conference on Communications
(ICC 2007), 24-28 June 2007, Glasgow, Scotland, (accepted for publication).
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Fig. 4. SDMA group size distribution.

in the NLOS scenario approximates 10% for α = 0.8 when

compared to RCBA with α = 0. In the LOS scenarios, spatial

correlation plays a more decisive role and the RCBA with

α = 0 already achieves over 90% of C90,ES . Nevertheless,

small gains are obtained for α = 0.3 when nT = 4, and

α = 0.8 when nT = 8. In practice, a control loop could

be implemented by the system in order to learn from the

environment and adaptively select an adequate value for α.

The obtained group sizes for the above configurations are

included in Fig. 4. It shows the distribution of the SDMA

group size obtained by RCBA with SRA, as well as the

optimum group size found by means of the ES. In Fig. 4(a),

it can be observed that G = 4 is the most frequent group size

when using the ES and nT = 4 transmit antennas. On the other

hand, in Fig. 4(a) in which nT = 8, the most frequent values

for G are 6 and 7 in the case of the ES. This explains the

better performance of RCBA with fixed group size G = nT

in Fig. 3(a) when nT = 4 compared to the case when nT = 8
in the same figure, as well as the improvement observed for

G = 6 and nT = 8. Anyway, it can be seen in Fig. 4 that

the optimum SDMA group size found using RCBA with SRA

often corresponds to the optimum one obtained through an ES

in all the considered scenarios.

In fact, information about the group size distribution can

be learnt by the system from the environment by applying the

SRA algorithm during an initial phase. After that phase, the

SRA could be simplified by discarding too large or too small

group sizes or, alternatively, by using even a fixed group size.

V. CONCLUSIONS

In this work, the SDMA grouping problem has been studied.

An SDMA grouping algorithm, namely the RCBA, is proposed

in order to find a sub-optimal but efficient solution with

reduced complexity compared to an ES. It uses a new grouping

metric, which is based on the spatial correlation and gains of

the MSs’ channels in the SDMA group. Thus, it optimizes

a trade-off between the minimization of the total spatial

correlation and the selection of channels with high gains. It for-

mulates the SDMA algorithm as a convex quadratic problem,

which can be efficiently solved using convex optimization.

In order to adjust the SDMA group size, which impacts the

overall performance of SDMA grouping algorithms, a sub-

optimal but effective algorithm, namely the SRA, is also

proposed. The performance of RCBA is investigated in two

extreme scenarios: a NLOS scenario with uncorrelated MSs’

spatial channels and a LOS scenario with strongly correlated

MSs’ spatial channels. Considering ZF precoding, RCBA with

a fixed group size and RCBA with SRA have been shown to

achieve up to 95% of the C90,ES . SRA has been shown to

find an adequate SDMA group size in a considerable number

of cases in all the investigated scenarios.
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