

int

<u>A Hybrid Localization Method for</u> <u>Mobile Station Location Estimation</u>

C. Fritsche[#], A. Klein[#], H. Schmitz^{*}, M. Pakulski^{**}

- # TU Darmstadt, Institute of Telecommunications, Communication Engineering Lab, Merckstr. 25, 64283 Darmstadt, Germany E-mail: [a.klein,c.fritsche]@nt.tu-darmstadt.de
- * Nokia Siemens Networks GmbH & Co. KG, Siemensdamm 62, 13627 Berlin, Germany
- ** Nokia Siemens Networks GmbH & Co. KG, ul. Strzegomska 46A, 53-611 Wroclaw, Poland
 - E-mail: [heiko.schmitz,maciej.pakulski]@nsn.com

Motivation (1)

Mobile station localization

TECHNISCHE

UNIVERSITÄT

DARMSTADT

	Accuracy	Availability	
	in m	Outdoor	Indoor / Dense Urban
Cellular Radio Network	50 - 550	J	J
Global Positioning System	5 – 100	J	X

Problem in indoor and dense urban scenarios

- Number of available GPS satellites is <u>not sufficient</u> for 3-D or even 2-D position fix with GPS
- Cellular radio network-based localization methods are almost everywhere available, but do not reach the accuracy of GPS

Motivation (2)

Idea

TECHNISCHE

UNIVERSITÄT

DARMSTADT

- The signal the mobile station (MS) receives from each GPS satellite provides information about the position of the MS
- Position information from each GPS satellite can be combined with position information available from the cellular radio network

Benefit

 Improved accuracy compared to cellular radio network-based localization methods

Hybrid Localization Method

- Problem of Combining Measured Values
- Hybrid Localization Principle
- Simulation Scenario
- Examples for Probability Density Functions
- Simulation Results
- Conclusion & Outlook

Problem of Combining Measured Values

Radio-based measured values	Satellite-based measured values
Received Signal Strength (RSS)	Time of Arrival (ToA)
Cell Global Identifier (CGI)	
Timing Advance (TA)	
 Enhanced observed time difference (E-OTD) 	

Problem

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Hybrid Localization Principle (1)

Idea

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Represent each measured value by its (conditional) probability density function \longrightarrow *Bayesian estimation approach*

Properties of probability density function

- + Gives the probability with which the MS is located at a certain position in a 2-D or 3-D space
- + Takes into account the different distributions of errors each measured value is affected with
- + Can be determined for any kind of measured value
- + Combination of different measured values is a simple multiplication of their conditional probability density functions

➡ Promising approach for a hybrid localization method

UNIVERSITÄT

DARMSTADT

Hybrid Localization Principle (2)

Simulation Scenario (1)

int

GSM network

TECHNISCHE

UNIVERSITÄT

DARMSTADT

- Field trial data available (car, outdoor)
- Dense urban scenario
- Base stations equipped with omnidirectional or directional antennas
- GSM data reporting period: $\approx 0.5 \text{ s}$

GPS network

- No field trial data available
- Satellite positions are taken from real satellite constellation (GPS Almanac)
- GNSS simulator generates synthethic measured values (LOS or NLOS)
- GPS data is adjusted to reporting period of GSM field trial data

UNIVERSITÄT

DARMSTADT

Simulation Scenario (2)

Combinations of measured values

- Timing Advance (TA) and Received Signal Strength (RSS) from serving base station (BS) and between one and six RSS values from neighbouring BSs (GSM)
- TA and RSS from serving BS and between one and six RSS values from neighbouring BSs and one Time of Arrival (ToA) measured value from one satellite (**Hybrid 1**)
- TA and RSS from serving BS and between one and six RSS values from neighbouring BSs and one ToA measured value from each of a total of two satellites (**Hybrid 2**)
- One ToA measured value from each of a total of two satellites (2 Satellite)

UNIVERSITÄT

DARMSTADT

Simulation Assumptions

int

- Fixed local Cartesian East-North-Up coordinate system
- Uniform a-priori probability density function
- MS is time-synchronized to GPS
- Error distributions of statistical model for RSS, TA and ToA measured values are Gaussian:

i	μ_i	σ_i
RSS	0 dB	6-10 dB
ТА	depends on TA value	2 µs
ТоА	0 µs	0.027 μs

- 2-D MS location is estimated
- Snapshot-based evaluation of algorithm

user equivalent range

error

Examples for Probability Density Functions (1)

Received Signal Strength

TECHNISCHE

UNIVERSITÄT

DARMSTADT

FG Kommunikationstechnik

Examples for Probability Density Functions (2)

Timing Advance

Time of Arrival

Δ Base station

Simulation Results (1)

Localization error $\Delta = ||\vec{x} - \hat{\vec{x}}||_2$

- Δ = distance between true and estimated MS location
- $P\{\Delta \leq \Delta_T\}$ = Probability that the localization error Δ falls below the threshold Δ_T

Car field trial

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Outdoor field trial

Incorporation of satellite measured value significantly improves the localization accuracy

Simulation Results (2)

Hybrid 2 method vs. 2 Satellite method

Car field trial

TECHNISCHE

UNIVERSITÄT

DARMSTADT

In LOS situations, the 2 Satellite method outperforms the Hybrid 2 method

UNIVERSITÄT

DARMSTADT

Conclusion & Outlook

- Hybrid localization method significantly improves the localization accuracy
- Hybrid localization method is easily extendable to other measured values (e.g. E-OTD, AoA)
- Implementation of hybrid localization method into mobile terminals possible in the near future
- Hybrid localization method can be easily applied to measured values of other systems (e.g. UMTS, WLAN or UWB)
- Enhance hybrid localization method by continously estimating the mobile station location (e.g. Extended Kalman Filter, Particle Filter)

TECHNISCHE UNIVERSITÄT DARMSTADT

int

Thank you for your attention