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Abstract
In this contribution, the application of two semi-circular array antennas, consisting of
monopoles and microstrip patches backed by a metallic reflector are investigated for
smart antenna systems with a wide angular-operating range. The pattern of the
monopoles or patches depends upon the respective position in the array. Therefore, and
due to the nonlinear arrangement of the elements, a transformation to an alternative
manifold is needed prior to the usual signal processing techniques. The investigated
transformations are based on the least-mean squares solution of an over-determined set
of equations and they already include the calibration in case of measured data. The
transformation is successfully applied to theoretical and measured array steering
vectors within a predefined angular-operation range of ±78°.

Introduction
In smart antenna systems, typical array
configurations are linear, rectangular or
circular, having array elements with identical
radiation pattern. Then, the overall radiation
pattern of the array is the product of the
element factor and the array factor, where the
element pattern basically limits the angular-
operating range of the array. To overcome
this limitation, arrays with different elements
may be used. The transformation schemes,
which are discussed in this paper, are needed
because the usual signal processing
techniques can not directly be applied to such
arrays. The investigated array configurations
are a Semi-Circular Monopole Array
(SCMA) and a Semi-Circular Microstrip
Patch Array (SCPA), both backed by a
metallic reflector. The realized SCMA in
Fig. 1 and the SCPA in Fig. 2 consist of eight
monopoles and eight series-fed microstrip
patch rows, respectively. Both are designed
to operate at 10 GHz.

Individual Element Pattern
To compare the two different arrays, all pattern functions are assumed to be
independent of the elevation angle Θ and investigated only in azimuth. The azimuth
plane is the xy-plane, the z-axis is parallel to the cylinder axis, and the x-axis, i.e.
Θ=π/2 and Φ=0, is perpendicular to the reflector.
The omnidirectional monopole and the image source caused by the reflector results in
an element pattern gn(Φ) of the monopoles in the SCMA that is simply a sine function,
depending upon the radius ρ and the angular position Φn of the monopoles within the
circular array. The radius is chosen to be λ0 to achieve a spacing below λ0/2 along the

Fig. 1: Semi-circular array of eight
monopoles (SCMA).

Fig. 2: Semi-circular array of eight
series-fed patch rows (SCPA).
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circumference. For the pattern of the elements in the SCPA, use is made of the
approximation according to [1]. The radius of the SCPA is 1.67λ0, yielding an element
spacing of about 0.7λ0. The theoretical element pattern are depicted in Fig. 3 for the
four elements on the upper quadrant of the realized arrays. Because of symmetry, the
elements on the lower quadrant show the same, but mirrored characteristics.
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Fig. 3: Magnitude of the theoretical element pattern g(Φ) for four of the eight elements
of the a) SCMA and b) SCPA. Φn describes the element´s angular position.
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Fig. 4: Magnitude of the measured element pattern g(Φ) for four of the eight elements
of the a) SCMA and b) SCPA. Φn describes the element´s angular position.

Fig. 4 exhibits the measured element pattern of the realized arrays, which are
characterized by a X-Band multi-channel measurement receiver. The comparison with
the theoretical pattern indicates a good agreement, where the small differences between
the plots are mainly due to the finite size of the reflector and mutual coupling, that
shows a stronger influence in the SCMA than in the SCPA.

Angular-Operation Range
Prior to the transformation an Angular-Operation Range (AOR) is defined in which the
transformation should work. For this purpose an optimum weight vector w and the
corresponding far-field pattern is determined for scanning directions -π/2 ≤ Φ0 ≤ π/2:

( )0 0( )HF Φ = ⋅ Φw a . (1)
The steering vector a of the semi-circular array with the element pattern gn(Φ) is:

[ ] ( )02 / cos
1( ) ( ) ( ) ( ) ( ) .nT j

N n na a a g e πρ λ ⋅ Φ−ΦΦ = Φ Φ Φ = Φ ⋅"a (2)
According to the beamforming method proposed in [2], the optimum weight vector is:

( )1 1
0 0

− −= Φ =w R a R a . (3)
In contrast to [2], a continuous noise environment with a uniform noise distribution
σ2=N0/(4π) is assumed here. If the steering vector is independent of Θ and the
azimuthal angular range is -π/2 ≤ Φ ≤ π/2, the elements ruv of R are determined by:
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where an are the elements of the steering vector. For some ideal array configurations
this integral may be solved analytically. It is interesting to note, that for a simple linear
array of isotropic radiators, spaced in λ0/2 distances, R is a multiple of the unity matrix
and the optimal antenna weight vector w is proportional to the steering vector a(Φ0) of
the desired scan direction. This corresponds to the matched filter solution, assuming
uncorrelated noise in the receiver branches. However, especially in the case of
measured steering vectors, Eq. (4) has to be solved numerically.
To assess the AOR of the investigated arrays, the achievable directivity D0 is
determined from Eq. (1) for each scanning angle Φ0. The achieved mean value of the
directivity is about 12.3 dBi ± 0.7 dBi within a sector of ±78° for both arrays. This
sector defines the AOR of the SCMA and the SCPA for the following transformation.

Transformation
The transformation method proposed in [3] is based on the principle of phase-mode
excitation and determines a transformation matrix T analytically to map the steering
vector a of a circular array to the manifold

( ) 1
TjM j j jMe e e e− Φ − Φ Φ Φ Φ = ⋅ =  " "BSMa T a . (5)

The vector aBSM(Φ) is the steering vector of a so called beam-space manifold (BSM).
The number of phase modes M that are considered depends upon the array radius and
is chosen to be M=5 for the SCMA and M=6 for the SCPA. DOA-estimation
algorithms, e.g. MUSIC, can be applied to this manifold in the same way as for linear
arrays, because the steering vector aBSM shows the same structure [3]. For beamforming
purposes, the optimum weights for this manifold are determined with Eq. (4) and the
elements of the matrix R are given by

( )( )0 2 si 2 , 1uvr N u v u v Mπ= ⋅ − = … . (6)
For the investigated semi-circular arrays there is no analytical solution for the
transformation matrix T and a best-fit approximation shall be found. Therefore, the
steering matrices

( ) ( ) ( ) ( ),   Φ Φ Φ Φ   " "1 L BSM BSM 1 BSM LA = a a A = a a (7)
are composed from steering vectors at L reference angles and the equation

= ⋅BSMA T A (8)
is solved in a least-mean squares sense by the pseudo inverse of A:

( ) 1−
= ⋅ ⋅H H

A BSMT A A AA . (9)

To evaluate the performance of the transformation, the error function err(Φ) is used:

( ) ( )
1

1 M

m
m

err
M =

Φ = ∆ Φ∑ ,  ( ) ( ) ( ) ( ) ( )1
T

BSM M Φ = Φ − Φ = ∆ Φ ∆ Φ …a Ta∆∆∆∆ (10)

As shown in Fig. 5, the transformation works for the SCMA, indicating a mean error of
only 5%, whereas the resulting mean error of about 22% for the SCPA is too large.
Therefore, a second scheme is proposed here, aiming to reduce this error. A new
matrix B is composed from the real and the imaginary part of the steering matrix A:

{ }
{ }

 ℜ
=  ℑ 

A
B

A
(11)

In Eq. (9), A is then replaced by B to determine TB instead of TA. This transformation
scheme yields much better results, reducing the mean error down to 1% for the SCPA.
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Because the inversion of BBH is not possible,
this scheme can not be applied to the
theoretical steering vector of the SCMA.
To compensate mutual coupling and other
electromagnetic effects, that are included in
real antenna systems, different calibration
algorithms have been proposed, e.g. the
method in [4] which is based on a least-mean
squares solution, too. The presented
transformation includes the calibration,
because it maps a measured steering vector to
an error-free BSM steering vector.
The resulting error after the transformation of
the measured values with both proposed
schemes is shown in Fig. 6. When the
measured values for the SCMA are used, the
inversion of BBH is possible. The second
transformation scheme that uses the separate
real and imaginary part of the measured
steering vectors reaches a mean error of 3%
and 10% for the SCMA and the SCPA,
respectively, which is significantly lower for
both arrays compared to the first scheme.

Conclusions
Two transformation schemes have been discussed for the application of semi-circular
array configurations with different elements in smart antenna systems. The investigated
arrays, the SCMA and SCPA consist of monopoles or microstrip patches, respectively,
both backed by a metallic reflector. The theoretical and measured element pattern, that
depend upon the element´s angular position in the array, are in good agreement. A a
wide angular-operating range of ±78° is defined in which a directivity of
12.3 dBi ± 0.7 dBi is achieved. The first transformation scheme works well for the
theoretical steering vectors of the SCMA but it fails for the SCPA. The second
transformation scheme works with separated real and imaginary parts of the steering
vectors. It is successful for the theoretical values of the SCPA but it can not be applied
to the SCMA. However, the transformation of the measured steering vectors, that
includes the calibration, with the second scheme yields by far the best results for both
arrays. Hence, it is assumed that this scheme may significantly improve the
transformation and calibration results for other array configurations, too.
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Fig. 5: Transformation error for the
theoretical steering vectors.
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Fig. 6: Transformation error for the
measured steering vectors.
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